
Document Information

Analyzed document Operating Systems.docx (D165733117)

Submitted 2023-05-03 06:27:00

Submitted by Mumtaz B

Submitter email mumtaz@code.dbuniversity.ac.in

Similarity 8%

Analysis address mumtaz.dbuni@analysis.urkund.com

Sources included in the report

URL: https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-

departme...

Fetched: 2022-12-06 05:59:12

33

URL: https://docplayer.net/201234710-Department-of-computer-science-and-engineering-

cs8493-operatin...

Fetched: 2022-05-09 06:27:26

21

120E1250, 137E1250, 170E2340-Operating System.doc
Document 120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

30

120E1250, 137E1250, 170E2340-Operating System.doc
Document 120E1250, 137E1250, 170E2340-Operating System.doc (D165245827)

21

Operating System.pdf
Document Operating System.pdf (D30089487)

38

URL: https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

Fetched: 2023-01-21 07:28:08
61

OS_SLM_Revised.pdf
Document OS_SLM_Revised.pdf (D155071872)

18

OS_Notes_Full.pdf
Document OS_Notes_Full.pdf (D108987417)

29

COOS.docx
Document COOS.docx (D142533740)

18

COOS.docx
Document COOS.docx (D142535190)

7

1 of 210 5/3/2023, 10:31 AM

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department-of-it-prepared-by-asst-prof-v-mohamed-keeran-it.html
https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department-of-it-prepared-by-asst-prof-v-mohamed-keeran-it.html
https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department-of-it-prepared-by-asst-prof-v-mohamed-keeran-it.html
https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department-of-it-prepared-by-asst-prof-v-mohamed-keeran-it.html
https://docplayer.net/201234710-Department-of-computer-science-and-engineering-cs8493-operating-systems-regulations-2017-iv-semester-prepared-by-asst-prof-r.html
https://docplayer.net/201234710-Department-of-computer-science-and-engineering-cs8493-operating-systems-regulations-2017-iv-semester-prepared-by-asst-prof-r.html
https://docplayer.net/201234710-Department-of-computer-science-and-engineering-cs8493-operating-systems-regulations-2017-iv-semester-prepared-by-asst-prof-r.html
https://docplayer.net/201234710-Department-of-computer-science-and-engineering-cs8493-operating-systems-regulations-2017-iv-semester-prepared-by-asst-prof-r.html
https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf
https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

INF_1036.pdf
Document INF_1036.pdf (D164968063)

19

InstructorsSolutions_ExcerciseQuestions.pdf
Document InstructorsSolutions_ExcerciseQuestions.pdf (D147754554)

5

URL: https://all-operatingsystems.blogspot.com/2009/

Fetched: 2022-11-26 22:19:03
1

Entire Document

Operating System

Unit 1: Introduction Operating System (OS)

1.1

Objective This unit provides a brief description and understanding about one of essential resource of the computer i.e. its

‘Operating System’. The unit first presents several definitions of Operating System and then provides different goals and

services provided by the operating system. Other topics covered within the unit are as follows, • Operating Systems as an

Extended Machine and Resource Manager • Operating Systems Classification • Operating Systems Goals, Functions /

Services

1.2 Introduction to Operating System An Operating Systems are so ubiquitous in computer operations that one hardly

realizes its presence. Most likely you must have already interacted with one or more different operating systems. The

names like DOS, UNIX etc. should not be unknown to you. These are the names of very popular operating systems. Try to

recall when you switch on a computer what all happens before you start operating on it. In a typical personal computer

scenario, this is what happens. Some information appears on the screen. This is followed by memory counting activity.

Keyboard, disk drives, printers and other similar devices are verified for proper operation. These activities always occur

whenever the computer is switched on or reset. There may be some additional activities. These activities are called

power-on routines. You know a computer does not do anything without properly instructed. Thus, for each one of the

power-on activities also, the computer must have instructions. These instructions are stored in a non-volatile memory,

usually in a ROM. The CPU of the computer takes one instruction from this ROM and executes it before taking next

instruction. One by one the CPU executes these instructions. Once, these instructions are over, the CPU must obtain

instructions from somewhere. Usually these instructions are stored on a secondary storage device like hard disk, floppy

disk or CD-ROM disk. These instructions are collectively known as Oper- ating System and their primary function is to

provide an environment in which users may execute their own instructions. Once the operating system is loaded into the

main memory, the CPU starts executing it. Operating systems run in an infinite loop, each time taking instructions in the

form of commands or programs from the users and executing them. This loop continues until the user terminates the

loop when the computer shuts down.

1.2.1 Some Definitions Operating system is the most important program on a computer. It basically runs the computer

and allows other programs to run as well. The operating system does all the basic things that a computer needs to do,

such as recognizing inputs from the mouse or the keyboard. It keeps track of where all the files are on the computer. It

allocates resources to the various programs that are running, and it prevents unauthorized access to the computer. The

most popular operating system today is Microsoft’s Windows operating system. Macintosh computers have their own

operating system, the most recent of which is called Mac OS X. There are also open-source operating systems such as

Linux. Some

of the important definitions

of

operating system are given as under: 1.

2 of 210 5/3/2023, 10:31 AM

https://all-operatingsystems.blogspot.com/2009/
https://all-operatingsystems.blogspot.com/2009/

91% MATCHING BLOCK 1/301

Operating System is a software program that acts as an interface between the user and the computer.

91% MATCHING BLOCK 2/301

Operating System is a software program that acts as an interface between the user and the computer.

It is a software package which allows the computer to function. 2. An operating system is a computer program that

manages the resources of a computer. It accepts keyboard or mouse inputs from users and displays the results of the

actions and allows the user to run applications or communicate with other computers via networked connections. 3. An

operating system is the collection of software that directs a computer’s operations, controlling and scheduling the

execution of other programs, and managing storage, input/output, and communication resources is it needed to write

sources. (Source:dictionary.com). 4. Operating system is a platform between hardware and user which is responsible for

the management and coordination of activities and sharing of resources of a computer. It hosts several applications that

run on a computer and handles the operations of computer hardware. 5. An operating system is the program that, after

being initially loaded into the computer bya boot pro- gram, manages all the other programs in a computer. The other

programs are called applications or application programs. The application programs make use of the operating system by

making requests for services through a defined application program interface (API). In addition, users can interact directly

with the operating system through a user interface such as a command language or a Graphical User Interface (GUI).

1.2.2 Goals An operating system is the most important program in a computer system. This is one program that runs all

the time, as long as the computer is operational and exits only when the computer is shut down.

Operating systems exist because they are a reasonable way to solve the problem of creating a usable computing system.

The fundamental goal of computer systems is to execute user programs and

to make solving user

problems easier.

Hardware of a computer is equipped with extremely capable resources – memory, CPU, I/O devices etc. All these

hardware units interact with each other in a well-defined manner. Hardware alone is not enough to solve a problem,

particularly

easy to use, application programs are developed. These various

programs require certain common operations, such as

those controlling the I/

O devices.

The common functions of controlling and allocating resources are then brought together into one piece of software: the

operating system.

It is easier to define operating systems by their functions, i.e., by what they do than by what they are. The computer

becomes easier for the users to operate, is

the primary goal of an operating system. Efficient operation of the computer system is

a secondary goal of an operating system. This goal is particularly important

for large, shared multi-user systems. These systems are typically expensive, so it is desirable to make them as efficient as

possible.

3 of 210 5/3/2023, 10:31 AM

Operating systems and computer architecture have had a great deal of influence on each other. To facilitate the use of

the hardware, operating systems were developed. As operating systems were designed and used, it became obvious that

changes in the design of the hardware could simplify them. Operating systems are the programs that make computers

operational, hence the name. Without an operating system, the hardware of a computer is just an inactive electronic

machine, possessing great computational power, but doing nothing for the user. All it can do is to execute fixed number

of instructions stored into its internal memory (ROM: Read Only Memory), each time you switch the power on, and

nothing else. Operating systems are programs that act as interface between the user and the computer hardware. They

sit between the user and the hardware of the computer providing an operational environment to the users and

application programs. For a user, therefore, a computer is nothing but the operating system running on it. It is extended

machine. Users do not interact with the hardware of a computer directly but through the services offered by operating

system. This is because the language that users employ is different from that of the hardware. Whereas users prefer to

use natural language or near natural language for interaction, the hardware uses machine language. It is the operating

system that does the necessary translation back and forth and lets the user interact with the hardware. The operating

system speaks users’ language one hand and machine language on the other. It takes instructions in form of commands

from the user and translates into machine understandable instructions, gets these instructions executed by the CPU and

translates the result back into user-understandable form. A user can interact with a computer if only he/she understands

the language of the resident operating system. You cannot interact with a computer running UNIX operating system, for

instance, if you do not know ‘UNIX language’ or UNIX commands. A UNIX user can always interact with a computer

running UNIX operating system, no matter what type of computer it is. Thus, for a user operating system itself is the

machine – an extended machine as shown in figure 1.1. The computer hardware is made up of physical electronic

devices, viz. memory, microprocessor, magnetic disks and the like. These functional components are referred to as

resources available to computers for carrying out their computations. All the hardware units interact with each other in

terms of electric signals (i.e. voltage and current) usually coded into binary format (i.e. 0 and 1) in digital computers, in a

very complex way.

Figure 1.1: Extended-machine view of operating system.

In order to interact with the computer hardware and get a computational job executed by it, the job needs to be

translated in this binary form called machine language. Thus, the instructions and data of the job must be converted into

some binary form, which then must be stored into the computer’s main memory. The CPU must be directed at this point,

to execute the instructions loaded in the memory. A computer, being a machine after all, does not do anything by itself.

Which resource is to be allocated to which program, when and how, is decided by the operating system in such a way

that the resources are utilized optimally and efficiently

1.2.3 Generations The earliest operating systems were developed in the late 1950s to manage tape storage, but

programmers mostly wrote their own I/O routines. In the mid-1960s, operating systems became essential to manage

disks, complex time sharing and multitasking systems. Today, all multi-purpose computers from desktop to mainframe

use an operating system. Consumer electronics devices increasingly use an OS, whereas in the past, they used custom

software that provided both OS and

application functionality.

Historically operating systems have been tightly related to the computer architecture, it is good idea to study the history

of operating systems from the architecture of the computers on which they run.

Operating systems have evolved through a number of distinct phases or generations which corresponds roughly to the

decades.

(

a)

The 1940’s - First Generations The earliest electronic digital computers had no operating

systems.

Machines of the time were so primitive that programs were often entered one bit at time on rows of mechanical switches

(plug boards). Programming languages were unknown (

not even assembly languages). Operating systems were unheard of. (

b)

The 1950’s - Second Generation

By the early 1950’s, the routine had improved somewhat with the introduction of punch cards.

4 of 210 5/3/2023, 10:31 AM

85% MATCHING BLOCK 3/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

The General Motors Research Laboratories implemented the first operating systems in early 1950’s for their IBM 701.

The system of the 50’s generally ran one job at a time.

These were called single-stream batch processing systems

because programs and data were submitted in groups or batches. (

c)

The 1960’s -

Third Generation

The systems of the 1960’s were also batch processing systems, but they

were able to take better advantage of the computer’s resources by running several jobs at once.

So operating

systems

designers developed the concept of multiprogramming in which several jobs are in main memory at once; a processor is

switched from job to job as needed to keep several jobs advancing while keeping the peripheral devices in use.

For example,

on the

system with no multiprogramming, when the current job paused to wait for other I/O operation to complete, the CPU

simply sat idle until the I/O finished. The solution for this problem that evolved was to partition memory into several

pieces, with a different job in each partition. While one job was waiting for I/O to complete, another job could be using

the CPU. Another major feature in third-generation operating system was the technique called spooling (Simultaneous

Peripheral Operations On Line). In spooling, a high-speed device like a disk interposed between a running program and a

low-speed device involved with the program in input/output. Instead of writing directly to a printer, for example, outputs

are written to the disk. Programs can run to completion faster, and other programs can be initiated sooner when the

printer becomes available, the outputs may be printed.

Note that spooling technique is much like thread being spun to a spool so that it may be later be unwound as needed.

Another feature present in

this generation was time-sharing technique, a variant of multiprogramming technique, in which each user has an on-line

(i.e., directly connected) terminal. Because the user is present and interacting with the computer, the computer system

must respond quickly to user requests, otherwise user productivity could suffer. Timesharing systems were developed to

multi-program large number of simultaneous interactive users. (

d)

Fourth Generation With the development of LSI (Large Scale Integration) circuits, chips, operating system entered in the

system entered in the personal computer and the

workstation age.

Microprocessor technology evolved to the point that it become possible to build desktop computers as powerful as the

mainframes of the 1970s.

Two operating systems have dominated the personal computer scene: MS-DOS, written by Microsoft, Inc. for the IBM PC

and other machines using the Intel 8088 CPU and its successors, and UNIX, which is dominant on the large personal

computers using the Motorola 6899 CPU family.

1.3

Classification of Operating Systems The variations and differences in the nature of different operating systems may give

the impression that all operating systems are absolutely different from each-other. But this is not true. All operating

systems contain the same components whose functionalities are almost the same. For instance, all the operating

systems perform the functions of storage management, process management, protection of users from one-another,

etc. The procedures and methods that are used to perform these functions might be different but the fundamental

concepts behind these techniques are just the same. Operating systems in general, perform similar functions but may

have distinguishing features. Therefore, they can be classified into different categories on different bases. Let us quickly

look at the different types of operating systems.

5 of 210 5/3/2023, 10:31 AM

1.3.1 Single User– Single Processing System The simplest of all the computer systems is a single user-single processor

system. It has a single processor, runs a single program and interacts with a single user at a time. The operating system

for this system is very simple to design and implement. However, the CPU is not utilized to its full potential, because it sits

idle for most of the time. Figure 1.2

Figure 1.2 Single user – single processor system In this configuration, all the computing resources are available to the

user all the time. Therefore, operating system has very simple responsibility. A representative example of this category of

operating system is MS-DOS.

1.3.2 Batch Processing Systems

68% MATCHING BLOCK 4/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

The main function of a batch processing system is to automatically keep executing one job to

68% MATCHING BLOCK 5/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245827)

The main function of a batch processing system is to automatically keep executing one job to

the next job in the batch (Figure 1.3). The main idea behind a batch processing system is to reduce the interference of the

operator during the processing or execution of jobs by the computer.

1.3.3 Parallel or Multiprocessing

100% MATCHING BLOCK 6/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

Systems Most systems to date are single-processor systems; that is, they have only one main CPU. However, there

100% MATCHING BLOCK 7/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245827)

Systems Most systems to date are single-processor systems; that is, they have only one main CPU. However, there

is a trend toward

100% MATCHING BLOCK 8/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

multiprocessor systems. Such systems have more than one processor in close communication, sharing the computer

bus, the clock, and sometimes memory and peripheral devices. These systems are referred to as tightly coupled

systems. 1.3.4

100% MATCHING BLOCK 9/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245827)

multiprocessor systems. Such systems have more than one processor in close communication, sharing the computer

bus, the clock, and sometimes memory and peripheral devices. These systems are referred to as tightly coupled

systems. 1.3.4

94% MATCHING BLOCK 10/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

Distributed Systems A recent trend in computer systems is to distribute computation among several processors. In

contrast to the tightly coupled systems, the processors do not share memory or a clock. Instead, each processor has

its own memory

6 of 210 5/3/2023, 10:31 AM

94% MATCHING BLOCK 11/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245827)

Distributed Systems A recent trend in computer systems is to distribute computation among several processors. In

contrast to the tightly coupled systems, the processors do not share memory or a clock. Instead, each processor has

its own memory

and

clock.

98% MATCHING BLOCK 13/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

The processors communicate with one another through various communication lines, such as high-speed buses or

telephone lines. These systems are usually referred to as loosely coupled systems, or distributed systems. The

processors in a distributed system may vary in size and function. They may include small microprocessors,

workstations, minicomputers, and large general-purpose computer systems. These processors are referred to by a

number of different names, such as sites, nodes, computers, and so on, depending on the context in which they are

mentioned. 1.2.5 Real Time Systems

98% MATCHING BLOCK 14/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245827)

The processors communicate with one another through various communication lines, such as high-speed buses or

telephone lines. These systems are usually referred to as loosely coupled systems, or distributed systems. The

processors in a distributed system may vary in size and function. They may include small microprocessors,

workstations, minicomputers, and large general-purpose computer systems. These processors are referred to by a

number of different names, such as sites, nodes, computers, and so on, depending on the context in which they are

mentioned. 1.2.5 Real Time Systems

100% MATCHING BLOCK 12/301 Operating System.pdf (D30089487)

processors in a distributed system may vary in size and function.

Another form of a special-purpose operating system is the

96% MATCHING BLOCK 15/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

real-time system. A real-time system is used when there are rigid time requirements on the operation of a processor or

the flow of data, and thus is often used as a control device in a dedicated application.

Sensors bring data to the computer. The computer must analyze the data and possibly adjust controls to modify the

sensor inputs.

Systems that control

scientific experiments, medical imaging systems, industrial control systems, and some display systems are real-time

systems.

Also included are

some automobile-

engine fuel-injection systems, home-appliance controllers, and weapon

systems.

1.4

7 of 210 5/3/2023, 10:31 AM

Functions/Services of Operating Systems As we know that operating system acts as an intermediary between the

computer hardware and its users, providing a high level interface to low-level hardware resources and making it easier

for the programmer and other users to access and use those resources. Some other functions/services provided by the

operating system are as follows: (a)

85% MATCHING BLOCK 16/301 Operating System.pdf (D30089487)

Program Execution The purpose of a computer system is to allow the user to execute programs. So the operating

system provides an environment where the user can conveniently run programs. The user does not have to worry

about the memory allocation or multitasking or anything. These things are taken care of by the operating systems.

Running a program involves the allocating and de-allocating memory, CPU scheduling in case of multiprocessing.

These functions cannot be given to the user-level programs. So user-level programs cannot help the user to run

programs independently without the help from operating systems. (b) I/O Operations Each program requires an input

and produces output. This involves the use of I/O. Operating systems hide from the user, the details of underlying

hardware for the I/O. All the user sees is that the I/O has been performed without any details. So, the operating system

by providing I/O, makes it convenient for the users to run programs. (

c)

100% MATCHING BLOCK 17/301 Operating System.pdf (D30089487)

File System Manipulation The output of a program may need to be written into new files or input taken from some files.

The

94% MATCHING BLOCK 18/301 Operating System.pdf (D30089487)

operating system provides this service. The user does not have to worry about secondary storage management. User

gives a command for reading or writing to a file and sees his/her task accomplished. Thus operating system makes it

easier for user programs to accomplish their task. This service involves secondary storage management. The speed of

I/O that depends on secondary storage management is critical to the speed of many programs and

hence

92% MATCHING BLOCK 19/301 Operating System.pdf (D30089487)

it is best relegated to the operating systems to manage it than giving individual users the control of it. It is not difficult

for the user-level programs to provide these services but for above mentioned reasons it is best if this service s left with

operating system. (d) Communications There are instances where processes need to communicate with each other to

exchange information. It may be between processes running on the same computer or running on the different

computers. By providing this service,

a

8 of 210 5/3/2023, 10:31 AM

94% MATCHING BLOCK 20/301 Operating System.pdf (D30089487)

operating system relieves the user of the worry of passing messages between processes. In case where the messages

need to be passed to processes on the other computers through a network, it can be done by the user programs. The

user program may be customized according to the hardware through which the message transits and provides the

service interface to the operating system. (e) Error Detection An error occurs when one part of the system may cause

malfunctioning of the complete system. To avoid such a situation the operating system constantly monitors the system

for detecting the errors. This relieves the user of the worry of errors propagating to various part of the system and

causing malfunctioning. This service cannot allow to be handled by user programs because it involves monitoring and

in cases altering area of memory or de-allocation of memory for a faulty process. Or maybe relinquishing the CPU of a

process that goes into an infinite loop. These tasks are too critical to be handed over to the user programs. A user

program if given these privileges can interfere with the correct (normal) operation of the operating systems. 1.5

Summary An Operating System

is a computer program that manages the resources of a computer. It accepts inputs from users and displays the results of

the actions and allows the user to run applications or communicate with other computers via networked connections.

The fundamental goal of computer systems is to execute user programs and

to make solving user

problems easier.

Efficient operation of the computer system is a secondary goal of an operating system. Single user-single processor

system has a single processor, runs a single program and interacts with a single user at

63% MATCHING BLOCK 21/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

a time. The main function of a batch processing system is to automatically keep executing one job to

63% MATCHING BLOCK 22/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245827)

a time. The main function of a batch processing system is to automatically keep executing one job to

the next job in the batch. The objective of a multiprogramming operating system is to increase the system utilization

efficiency. In a Time sharing, or multitasking system

multiple jobs are executed by the CPU

switching between them, but the

switches occur so frequently

that the users may interact with each program while it is running.

Parallel or Multiprocessing

100% MATCHING BLOCK 23/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

systems have more than one processor in close communication, sharing the computer bus, the clock, and sometimes

memory and peripheral devices.

100% MATCHING BLOCK 24/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245827)

systems have more than one processor in close communication, sharing the computer bus, the clock, and sometimes

memory and peripheral devices.

9 of 210 5/3/2023, 10:31 AM

94% MATCHING BLOCK 25/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

The processors in a distributed system may vary in size and function. They may include small microprocessors,

workstations, minicomputers, and large general-purpose computer systems.

94% MATCHING BLOCK 26/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245827)

The processors in a distributed system may vary in size and function. They may include small microprocessors,

workstations, minicomputers, and large general-purpose computer systems.

Resource sharing is the main advantage of distributed

100% MATCHING BLOCK 27/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

systems. A real-time system is used when there are rigid time requirements on the operation of a processor or the flow

of data, and thus is often used as a control device in a dedicated application.

100% MATCHING BLOCK 28/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245827)

systems. A real-time system is used when there are rigid time requirements on the operation of a processor or the flow

of data, and thus is often used as a control device in a dedicated application.

Sensors bring data to the computer. The computer must analyze the data and possibly adjust controls to modify the

sensor inputs.

Services provided by the operating system are as follows: 1.

100% MATCHING BLOCK 29/301 Operating System.pdf (D30089487)

Operating system provides an environment where the user can conveniently run programs. 2.

It makes possible all Input/Output operations. 3.

100% MATCHING BLOCK 30/301 Operating System.pdf (D30089487)

Operating system makes it easier for user programs to accomplish their task. 4.

100% MATCHING BLOCK 31/301 Operating System.pdf (D30089487)

Operating system relieves the user of the worry of passing messages between processes. 5.

100% MATCHING BLOCK 32/301 Operating System.pdf (D30089487)

Operating system constantly monitors the system for detecting the errors. This relieves the user of the worry of errors

propagating to various part of the system and causing malfunctioning.

10 of 210 5/3/2023, 10:31 AM

Self-Assessment Questions 1. Discuss the inconveniences faced by a user interacting with a computer system without an

operating system. 2. Give various definitions of operating system. 3. Discuss various types of operating systems with

suitable examples. 4. Differentiate between Multiprogramming and Multiprocessing operating systems with suitable

examples. 5. What are the various services provided by the operating system? Discuss. 6. Operating system acts as

resource manager. What resources does it manage? 7. What are the benefits of multiprogramming? 8. What are the

characteristics of real time operating systems? 9. How does a distributed system enhance resource sharing? 10. What are

the constraints of a real time system?

Unit 2: User Interface & Computing Environments

2.1

Objective

This unit provides a brief description and understanding about most often terms of an Operating systems i.e. ‘User

Interfaces’ and ‘Computing Environments’. This unit first presents a brief description about

Comm and

Interpreter and Graphical User Interface and then after it provides information about various types of ‘computing

Environments’ such as Client-Server Computing, Peer-to-Peer Computing, Web based Computing etc. Self answering

questions and names of various reference books are also provided at the end of this unit.

2.2 Introduction When the computer is turned on, a small ‘boot program’ loads the operating system. Although

additional system modules may be loaded as needed, the main part, known as the ‘kernel’ resides in memory at all times.

The operating system (OS) sets the standards for all application programs that run in the computer. Applications ‘talk to’

the operating system for all user interfaces and file management operations. Also called an ‘executive’ or ‘supervisor’, an

operating system performs some functions like – User Interface, Job Management, Task Management, Data

Management, Device Management and Security etc.

2.3 User Interfaces Operating system works as an Interface between ‘Computer Hardware’ and the ‘User’. Graphics based

user interface includes the windows, menus and method of interaction between the user and the computer. Prior to

graphical user interfaces (GUIs), all operation of the computer was performed by typing in commands. Not at all extinct,

a command-line interface is included in all major operating systems, and certain highly technical operations must be

executed from the command line. Operating systems may support optional interfaces. Although the overwhelming

majority of people work with the default interface, different ‘shells ‘offer variations of appearance and functionality. There

are mainly two types of user interfaces available and known as – Command User Interface (CUI) and Graphical User

Interface (GUI). A CUI and a GUI are the two most common interface types associated with computers. They allow the

user to interact with the machine, giving it commands and viewing text or graphics.

2.3.1 Command Interpreter/ Character-Based User Interface (CUI) CUI stands for Character-based User Interface. Early

computers operated on CUIs, and they’re most iconic for their typical two-colored, black and green screens with

nothing but text. Users would use a keyboard to both navigate (using hotkeys) and enter commands. There was no need

for a mouse in these early days, as Character-Based User Interfaces do not support such advanced hardware. A program

which reads textual commands from the user or from a file and executes them is called ‘Command Interpreter’. Some

commands may be executed directly within the interpreter itself (e.g. setting variables or control constructs), others may

cause it to load and execute other files. In other words, a ‘Command Interpreter’ is the part of a computer operating

system that understands and executes commands that are entered interactively by a human being or from a program. In

some operating systems, the command interpreter is called the shell. When an IBM PC is booted BIOS loads and runs the

MS-DOS command interpreter into memory from file COMMAND.COM found on a floppy disk or hard disk drive. The

commands that COMMAND.COM recognizes (e.g. COPY, DIR, PRN) are called internal commands, in contrast to external

commands which are executable files. According to technology website, PC Mag, the CUI was most common on older

mainframe and minicomputer terminals in the early days of computing. Some early computers even featured character-

based user interfaces, the most notable being Macintosh’s Apple II computer. While CUIs have since fallen out of favor

for graphical user interfaces, most modern operating systems feature a modified version of a CUI called a command line

interface.

11 of 210 5/3/2023, 10:31 AM

2.3.2 Graphical User Interface (GUI) A graphical user interface (GUI) is a computer environment that simplifies the user’s

interaction with the computer by representing programs, commands, files, and other options as visual elements, such as

icons, pull-down menus, buttons, scroll bars, windows, and dialog boxes. By selecting one of these graphical elements,

through either use of a mouse or a selection from a menu, the user can initiate different activities, such as starting a

program or printing a document. Prior to the introduction of GUI environments, most interactive user interface programs

were text oriented and required the user to learn a set of often complex commands that could be unique to a given

program. The first GUI was developed in the 1970s by Xerox Corporation, although GUIs did not become popular until

the 1980s with the emergence of the Apple Macintosh computer. Today, the most familiar GUI interfaces are Apple

Computer’s Macintosh and Microsoft Corporation’s Windows operating systems. Computer software applications, such

as word processing and spreadsheet packages, typically use the set of GUI elements built into the operating system and

then add other elements of their own. The advantage of the GUI element of any software program is that it provides a

standard method for performing a given task (i.e., copying a file, formatting text, printing a document) each time the user

requests that option, rather than creating a set of commands unique to each potential request.

Figure 2.1: Essential components of Windows Operating system as a GUI

Many GUI elements are standard across all packages built on the same operating system, so once a user is familiar with

the GUI elements of one package, it is easier to then work in other packages.

Figure 2.2: The First Commercial GUI Generally, because of their GUI elements, any two programs even from different

developers that are built on the same operating system are able to share data, thereby saving a user from having to re-

key the same information for use in different programs. For example, a user can copy a graph created in a spreadsheet

package and place, or ‘paste,’ it into a word processing document. GUI interfaces also typically offer more than one

method for initiating a particular action. For example, to print a document from a program within the Windows

environment, a user can select the ‘Print’ option from the ‘File’ menu, click the printer icon, or, as an alternative, use the

keyboard shortcut of holding down the Ctrl key and pressing the letter ‘P.’ A user can then employ the option that feels

most comfortable to him or her across all Windows programs. The GUI interface has also been instrumental in making

the World Wide Web easily accessible to individuals through the use of the use of GUI-based ‘browser’ programs.

Netscape Navigator, Internet Explorer, and similar programs enable a user to access and search the web using the

familiar GUI format. Today, GUIs are synonymous with personal computing. GUIs are much more advanced than their

earlier counterparts because of all the computing and graphical power available today. While many operating systems

allow for full control with a keyboard, these systems are much easier to operate with the addition of a mouse.

2.3.3 Difference between CUI and GUI CUI and GUI are acronyms that stand for different kinds of user interface systems.

These are terms used in reference to computers. CUI stands for Character User Interface while GUI refers to Graphical

User Interface. Though both are interfaces and serve the purpose of running the programs, they differ in their features

and the control they provide to the user. CUI means you have to take help of a keyboard to type commands to interact

with the computer. One can only type text to give commands to the computer as in MS-DOS on command prompt.

There are no images or graphics on the screen, and it is a primitive type of interface. In the beginning, computers had to

be operated through this interface and users who have seen it say that they had to contend with a black screen with

white text only. In those days, there was no need of a mouse as CUI did not support the use of pointer devices. CUI’s

have gradually become outdated with the more advanced GUI taking their place. However, even the most modern

computers have a modified version of CUI called CLI (Command Line Interface). GUI is an interface that makes use of

graphics, images and other visual clues such as icons. This interface made it possible for a mouse to be used with a

computer and interaction really became very easy as the user could interact with just a click of the mouse rather than

having to type every time to give commands to the computer. Some other differences are given as under, • CUI is the

precursor of GUI and stands for character user interface where user has to type on key- board to proceed. On the other

hand GUI stands for Graphical User Interface which makes it possible to use a mouse instead of keyboard; • GUI is event

driven in nature but CUI is sequence oriented in nature; • GUI is much easier to navigate than CUI; • There is only text in

case of CUI whereas there are graphics and other visual clues in case of GUI; • Most of modern computers use GUI and

not CUI; MS-DOS is an example of CUI whereas MS-Windows is an example of GUI.

2.4

Computing Environments An operating system may process its tasks serially or simultaneously, which means that the

resources of the

12 of 210 5/3/2023, 10:31 AM

computer system may be dedicated to a single program until its completion or they may be allocated among several

programs in different stages of execution.

So, there are several computing environments as discussed below.

2.4.1 Traditional Computing Machine language was quite common for early computer systems. Instructions and data

used to be fed into the computer system by means of console switches through a hexadecimal keyboard. Programs used

to be started by loading the program computer register with the address of the first instruction of a program and its result

used to be examined by the contents of various registers and memory locations of the machine. This programming style

caused a low utilization of users and machine. Program started being coded into programming language are first

changed into object code (i.e. binary code) by translator and then automatically gets loaded into memory by a program

called Loader. After transferring the control to the loaded program, the execution of program begins and its results get

displayed or printed. Once in memory, the program may be re-run with a different set of input data. This type of

computing environment is called ‘Serial Processing’ computing. ‘Batch Processing’ Computing is another type of

traditional computing environment.

68% MATCHING BLOCK 33/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

The main function of a batch processing system is to automatically keep executing one job to

68% MATCHING BLOCK 34/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245827)

The main function of a batch processing system is to automatically keep executing one job to

the next job in the batch. The main idea behind a batch processing system is to reduce the interference of the operator

during the processing or execution of jobs by the computer. All functions of a batch processing system are carried out by

the batch monitor. The batch monitor permanently resides in the low end of the main store. The current jobs out of the

whole batch are executed in the remaining storage area. In other words, a batch monitor is responsible for controlling all

the environment of the system operation. The batch monitor accepts batch initiation commands from the operator,

processes a job, performs the job of job termination and batch termination.

2.4.2 Client-Server Computing Client–server computing is a distributed computing model in which client applications

request services from server processes. Clients and servers typically run-on different computers interconnected by a

computer network. Any use of the Internet, such as information retrieval from the World Wide Web, is an example of

client–server computing. However, the term is generally applied to systems in which an organization runs programs with

multiple components distributed among computers in a network. The concept is frequently associated with enterprise

computing, which makes the computing resources of an organization available to every part of its operation. A client

application is a process or program that sends messages to a server via the network. Those messages request the server

to perform a specific task, such as looking up a customer record in a database or returning a portion of a file on the

server’s hard disk. The client manages local resources such as a display, keyboard, local disks, and other peripherals. The

server process or program listens for client requests that are transmitted via the network. Servers receive those requests

and perform actions. Server processes typically run on powerful PCs, workstations, or mainframe computers.

13 of 210 5/3/2023, 10:31 AM

Figure 2.3: Client-Server Computing Environment An example of a client–server system is a banking application that

allows a clerk to access account information on a central database server. All access is done via a PC client that provides

a graphical user interface (GUI). An account number can be entered into the GUI along with how much money is to be

withdrawn or deposited, respectively. The PC client validates the data provided by the clerk, transmits the data to the

database server, and displays the results that are returned by the server. The client–server model is an extension of the

object based (or modular) programming model, where large pieces of software are structured into smaller components

that have well defined interfaces. This decentralized approach helps to make complex programs maintainable and

extensible. Components interact by exchanging messages or by Remote Procedure Calling. The calling component

becomes the client and the called component the server. A client–server environment may use a variety of operating

systems and hardware from multiple vendors; standard network protocols like TCP/IP provide compatibility. Vendor

independence and freedom of choice are further advantages of the model. Client–server systems can be scaled up in

size more readily than centralized solutions since server functions can be distributed across more and more server

computers as the number of clients increases. Server processes can thus run in parallel, each process serving its own set

of clients. However, when there are multiple servers that update information, there must be some coordination

mechanism to avoid inconsistencies. The drawbacks of the client–server model are that security is more difficult to

ensure in a distributed environment than it is in a centralized one, that the administration of distributed equipment can be

much more expensive than the maintenance of a centralized system, that data distributed across servers needs to be

kept consistent, and that the failure of one server can render a large client–server system unavailable. If a server fails,

none of its clients can make further progress, unless the system is designed to be fault tolerant. The computer network

can also become a performance or reliability bottleneck: if the network fails, all servers become unreachable. If one

client produces high network traffic then all clients may suffer from long response times.

Figure 2.4: A typical Client-Server interaction

2.4.3 Peer-to-Peer Computing The term ‘peer-to-peer’ (P2P) refers to a class of systems and applications that employ

distributed resources to perform a function in a decentralized manner. With the pervasive deployment of computers, P2P

is increasingly receiving attention in research, product development, and investment circles. In this type of computing all

nodes on the network have equal relationships to all others, and all have similar types of software. Typically, each node

has access to at least some of the resources on all other nodes, so the relationship is nonhierarchical. If they are set up

correctly, Operating system give users access to the resources attached to other computers in the network. A peer-to-

peer computing environment is shown in Figure 2.5. In addition, some high-end peer-to-peer networks allow distributed

computing, which enables users to draw on the processing power of other computers in the network. That means

people can transfer tasks that take a lot of CPU power such as creating computer software to available computers,

leaving their own machines free for other work. Peer-to-peer computing environment is commonly set up in small

organizations (fewer than 50 employees) or in schools, where the primary benefit of a network is shared storage, printers,

and enhanced communication. Where large databases are used, LANs are more likely to include client/server

relationships. A peer-to-peer network can also include a network server. In this case, a peer-to-peer LAN is similar to a

file server network. The only difference between them is that the peer-to-peer network gives users greater access to the

other nodes than a file server network does.

Figure 2.5: Peer-to-Peer Computing Environment

Some of the benefits of a P2P approach include improving scalability by avoiding dependency on centralized points;

eliminating the need for costly infrastructure by enabling direct communication among clients; and enabling resource

aggregation.

2.4.4 Web-Based Computing Web computing can be defined as a special kind of distributed computing that involves

internet-based collaboration of several remotely located applications. The idea behind Web Computing is to make

distributed computing accessible to as many people as possible. Browsers today have powerful and highly optimized

JavaScript engines that in many cases are capable of providing computing capabilities comparable to native solutions.

The Web Computing framework is a JavaScript library that provides client functionality required by distributed computing

solutions. Web applications based on Web Computing are capable of requesting jobs from a number of work sources,

downloading and executing them, uploading the results and handling various messages.

2.4.5

14 of 210 5/3/2023, 10:31 AM

94% MATCHING BLOCK 35/301 Operating System.pdf (D30089487)

System Calls System calls provides an interface between the process and the operating system. System calls allow

user-level processes to request some services from the operating system which process itself is not allowed to do.

In handling the trap, the operating system will enter in the kernel mode, where it has access to privileged instructions,

and can perform the desired service on the behalf of user-level process. It is because of the critical nature of operations

that the operating system itself does them every time they are needed. For example,

100% MATCHING BLOCK 37/301 Operating System.pdf (D30089487)

for I/O a process involves a system call telling the operating system to read or write particular area and this request is

satisfied by the operating system.

System programs

80% MATCHING BLOCK 36/301

provide basic functioning to users so that they do not need to write their own

environment for program development (editors, compilers) and program execution (shells). In some sense, they are

bundles of useful system calls.

Modern processors provide instructions that can be used as ‘

System Calls’.

100% MATCHING BLOCK 38/301

System calls provide the interface between a process and the operating system.

A system

call instruction is an instruction that generates an interrupt that cause the operating system to gain control of the

processor. System Call works in the following ways, 1. First the program executes the system call instructions. 2. The

hardware saves the current (instruction) and PSW register in the ii and iPSW register. 3. 0 value is loaded into PSW register

by hardware. It keeps the machine in system with interrupt disabled. 4. The hardware loads the i register from the system

call interrupt vector location. This completes the execution of the system call instruction by the hardware. 5. Instruction

execution continues at the beginning of the system call interrupt handler. 6. The system call handler completes and

executes a return from interrupt (rti) instructions. This restores the i and PSW from the ii and iPSW.

The process that executed the system call instruction continues at the instruction after the system call.

A system call is made using the system call machine language instructions. System calls can be grouped into following

five major categories- 1. File Management 2. Interprocess Communication 3. Process Management 4. I/O Device

Management 5. Information maintenance.

System calls used for create and delete the files. System calls require name of the file with file attributes for creating and

deleting files. Other operations on files are read a file, write and reposition the file after it open. After all file is closed with

close system call. For directories, same set of operations are performed. Sometimes, we required to reset some of the

attributes on files and directory. The

system call, get file attribute and set file attribute are used for this

type of operations. Some OS

provide many more calls, such as calls for file move and copy.

15 of 210 5/3/2023, 10:31 AM

System calls for ‘File Management’ are as follows Create Create a new file and Open it. Delete Delete a file. Open Open a

file to read or write. Close Close a file, indicating that file is no longer using it. Read Read a byte from an open file. Write

Write a byte to an open file. Stat Get information about a file. Unlink Remove a file from a directory.

Get/Set file attribute includes file name, file type, protection codes and accounting information. System call is used for

terminating the current running process abnormally. Running program halted by tow ways: normal or abnormal. Reasons

for abnormal termination of programs are – dump of memory, error message generated causes an error trap etc.

debugger is used to determine the problem of dump. Dump is written to disk. OS transfer control to the command

interpreter in normal or abnormal conditions.

In batch OS, the command interpreter usually terminates the entire job and continues with the net job.

Some

operating

systems allow control cards to indicate special recovery action in case

an error occurs. It is

possible to combine normal and abnormal termination

at some error level. Error level is defined before combines command interpreter use these error level to determine the

next action automatically. Load and Execute system calls are used by process to

execute one program. This feature allows the command interpreter to execute a program.

Get process attributes and set process attributes system calls are used

to determine and reset the attributes of a job or process. It also includes job priority, its maximum allowable execution

time

etc. terminate process is the system call to terminate the process or job. Wait time and wait event are the system call

used in waiting condition of the process. When process is created, it

may need to wait for them to finish their execution.

Certain amount of time

is required to wait before to complete the operation. System call of this type is dealing with the coordination of

concurrent processes. Debugging a program is also provided by system calls. Microprocessors also provide a single

stepping execution of program.

Trap is executed by the CPU after every instruction. Debugger caught the trap, which is

a system program designed to aid the programmer in finding and correcting

bugs.

System calls for ‘Interprocess Communication’ are as follows- Create message queue Create a queue to hold message.

68% MATCHING BLOCK 40/301

Send message Send a message to a message queue. Receive message Receive a message from a

message queue. Close connection Terminates the communication.

System calls for ‘Process Management’ are as follows, Create process Create a new process. Terminate process

Terminate the process making the system call. Wait Wait for another process to exit. Fork Create a duplicate of the

process making a system call. End Halt the process execution normally Abort Halt the process execution abnormally.

Load Load the process into memory. Execute Execute the loaded process. Get process attributes and set

process attributes To Get and Set process attributes Allocate and free memory. To allocate and to release the memory

For accessing device, system calls are used. Many of the system calls for files are also needed for devices. In multi-user

environment, request is made before to sue of that device. After using any device, it must be release. So using release

system call, device is free to use by another user.

These functions are similar to the open and close system

call of files. System calls for ‘I/O Device Management’ are as follows- Request device To ensure exclusive use of device.

Release device Release the device after finished with the device. Read, write Same as file system call. State Get

information about an I/O device.

16 of 210 5/3/2023, 10:31 AM

System calls for ‘Information maintenance’ are as follows- Get time and date Set time and date Set process, file or device

attributes. Get process, file or device attributes Get system data Set system data. The operating system provides a set of

operations which are called system calls. A system call interface is the description of the set of system calls implemented

by the operating system.

2.5

Summary Operating system works as an Interface between ‘Computer Hardware’ and the ‘User’. There are mainly two

types of user interfaces available and known as ‘Command User Interface’ (CUI) and ‘Graphical User Interface’ (GUI). A

program which reads textual commands from the user or from a file and executes them is called ‘Command Interpreter’.

A graphical user interface (GUI) is a computer environment that simplifies the user’s interaction with the computer by

representing programs, commands, files, and other options as visual elements, such as icons, pull-down menus, buttons,

scroll bars, windows, and dialog boxes. DOS is an example of CUI whereas Windows is an example of GUI. GUI is event

driven in nature, but CUI is sequence oriented in nature. Client–server computing is a distributed computing model in

which client applications request services from server processes. Clients and servers typically run-on different computers

interconnected by a computer network. A client application is a process or program that sends messages to a server via

the network. The term ‘peer-to-peer’ (P2P) refers to a class of systems and applications that employ distributed

resources to perform a function in a decentralized man- ner. In this type of computing all nodes on the network have

equal relationships to all others, and all have similar types of software. Web computing can be defined as a special kind of

distributed computing that involves internet-based collaboration of several remotely located applications. The idea

behind Web

Computing

is to make distributed computing accessible to as many people as possible.

100% MATCHING BLOCK 39/301

System calls provide the interface between a process and the operating system.

A system

call instruction is an instruction that generates an interrupt that cause the operating system to gain control of the

processor.

Self Assesment Questions 1. What is a system call? Give some examples of system calls. 2. Discuss the following with

proper illustration, • Peer-to-Peer computing environment • Client-Server Computing 3. What do you understand by

‘Web-based’ computing? 4. Write a short note on various types of ‘User Interfaces’. 5. What is GUI? Give any three

examples of GUI. 6. What is Command interpreter? Give any one example of CUI.

Unit 3: Types of Operating Systems

3.1

Objective

After studying,

this unit you will be able to understand the

various types of operating systems

and their

evolution. Also, you will be able to differentiate between the different types of operating systems according to their

features and working.

3.2 Introduction An operating

system

is an integrated set of programs that

91% MATCHING BLOCK 41/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

controls and coordinates the use of hardware among various application programs for

17 of 210 5/3/2023, 10:31 AM

91% MATCHING BLOCK 42/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245827)

controls and coordinates the use of hardware among various application programs for

different users. It acts as an interface between the users and computer hardware (see Fig 3.1). The operating system

provides varieties of facilities and services to assist a programmer in creating programs. These facilities are in the form of

utilities such as editors, compilers, interpreters, etc. Besides this the operating system performs function such as hiding

details of the hardware, resource management, etc. Due to the complexity of

an operating system, it must be created piece by piece.

Each of

these pieces must

be well delineated portion of the system, with clearly defined inputs, outputs, and functions.

The most commonly used operating systems are Windows 95, Windows 98, WindowsNT, Windows XP, OS/2, Unix, Mac

OS, Linux, Windows 7.0, etc. These operating systems simultaneously manage information measuring 16 bits, 32 bits, 64

bits or more.

Figure 3.1: Operating System as an Interface

3.3 Evolution of Operating System In early computer system, after writing program on the paper, the programmer or a

data entry operator punches the program and its data on the cards or paper taps. Then onward, the programmer submits

the deck of cards or the paper taps containing the program and the data at the computer centre, where an operator

loads it manually in the system. Before loading it, the operator clears the data from previous job, remaining in the main

memory. Finally, the operator prints the result of the execution of the job at the computer centre, which is collected by

the programmer, later on. The same process was repeated for every job. This whole process was known as Manual

Loading Mechanism. In manual Loading mechanism, job to job transition was not automatic, due to which computer

remained idle, while an operator load and unloads jobs and prepared the system for a new job. These actions wasted a

lot of central processing unit time. In order to reduce this idle time and speed up the processing, automatic job to job

transition method was devised. This method was called Batch Processing (BP), where, jobs with similar need were

batched together and were seen as a group. In this method when one job finishes, system control is transferred backed

automatically to the operating system that performs jobs needed to load and run the next job (as shown in Figure 3.2).

Operating System User Program Area Figure 3.2: Simple Batch System Batch Processing helped in reducing, not only the

idle time of a computer system, but also, the set up time required by the operator to batch similar jobs together. For

example, if all FORTRAN compilation jobs are batched together, the FORTRAN Compiler needs to be loaded once only

for processing of all these jobs. Control statements were used by the operating system to identify new job and to

determine the resources needed by it during its execution. These control statements were written in a language which

was known as Job Control Language (JCL). Typical JCL commands included, making of job beginning and end,

command for loading and execution of the program and commands to announce resource needs. However, the delay

between job submission and completion increased in batch processing system, where, a large number of programs were

put in a batch and processed. In order to improve the performance of the system, two approaches were developed -

Buffering and Spooling. Buffering is a method of overlapping input, output and processing of a single job whereas

Spooling allows central processing unit to overlap the input of one job with the computation and output of the other

jobs. Spooling uses the disk as a very buffer for reading and for storing output files. Although, disks were faster than the

card reader and printers, they had their limitation. Performance of the system improved with the help of buffering and

spooling, but, both of them have their limitations. An efficient approach was developed to increase the system

performance and resource utilization, so that central processing unit always has a job to execute. This approach known

as Multiprogramming approach interleaved execution of two or more different and independent program by a computer

(as shown in Figure 3.3). Operating System Program A Program B Figure 3.3: Multi programmed Batch System Thus, in

this approach multiple program are available to the CPU and a portion of one is executed, then a portion of another and

so on.

18 of 210 5/3/2023, 10:31 AM

3.4 Types of Operating System The operating system is considered as a backbone of a computer managing, both,

hardware and software resources. The operating system may be classified as single- user system and multi-user system.

In a single-user system, the operating system acts as a interface for only one user whereas in multi-user system, it act as

an interface for more the one user. We will know discuss different types of operating system.

3.4.1 Batch Processing Operating System This operating system requires grouping of similar jobs which consist of

programs, data and system commands. In batch processing, jobs are loaded into a system and processed one at a time.

Once loaded, a job remains in the main memory until its execution is over and next job is loaded automatically, only,

after the completion of current job. This type of processing is suitable for those programs which require large

computation time. In this processing, there is little or no need of user interaction. The user prepares their program and

data and submits them to the operator. The operator gives a command to the system to start executing the batched jobs.

When all jobs in the submitted batch were processed, the operator takes out the printout and keeps them. These

printouts are collected by the user later on. Some example of such programs includes payroll, forecasting, etc. In the

Batch Processing, the Process Scheduling, Memory Management, File Management and Input/ output Management are

simple. As only one program is executive at a time, there is no competition for Input/output devices. Also, there is hardly

a need for the file access control mechanism in this processing. Here the memory is divided into two parts - one part

contains operating system routines while the other part contain user program to be executed.

Limitation: (1) Time taken between job submission and job completion is very high (2) As user interaction is very limited,

they have no control over the intermediate results of a program. (3) The programmer cannot correct bugs, the moment

it occurs in this approach. Thus programs must be debugged.

3.4.2 Multiprogramming Operating System Suppose there is a single program resident in the main memory, and it is

being executed by the CPU. If the program is I/O bound, then the program would run for a moment and then pass into

the wait state (see Figure 3.4). During the wait period, the CPU remains idle. Moreover, irrespective of the type of

program, whenever, a program finishes its job, the operating system loads new program from the hard disk into the

memory and hand over the control to CPU. The Hard Disk being a slower device as compared to Central Processing

Unit, a lot of time is wasted during loading of the new program and obviously the CPU remains idle in the mean time.

User Job

Operating System CPU

Execution in progress

Figure 3.4: Uniprogramming System The remedy to the above cited problem is multiprogramming. This type of operating

system allows con- current residency of many programs in the main memory of the computer. As there is more than

one program resident in the main memory, another program is available for the execution in a situation where the

current executing program enters in the wait state. Thus the CPU will spend less time idle. When a program finishes its

job, the Central Processing Unit is immediately allotted to another program residing in the main memory and thus, no

time is wasted. The vacancy created by the ongoing program is filled by the operating system who loads a new program

from the hard disk to the vacant area in the main memory. One of the unique features of multiproamming system is that

storage is allocated for each program. The areas of primary storage allocated for the individual programs are called

partitions. Each partition must have some form of storage and priority protection to ensure that a program in one portion

will not accidently writes over and destroys the instruction of another partition and priority because both, programs will

need access to the central processing unit facilities. Figure 3.5 gives illustration of multiprogramming system where there

three jobs (1, 2 and 3) residing in the memory, out of which job1 is performing I/O operation, job2 is executing and job3 is

waiting for the CPU to become free.

Figure 3.5: Multiprogramming System The Multiprogramming Operating System results in greater memory efficiency and

lesser Central Processing Unit idle time. In a Multiprogramming system, often there are multiple jobs in ready state.

Hence when CPU becomes free, the operating system must decide which of these ready jobs should be allocated to the

CPU for execution. CPU Scheduler is that part of the operating system which takes such a decision. Although this

operating system is complex but still it is preferred due to its higher processor efficiency.

19 of 210 5/3/2023, 10:31 AM

3.4.3 Multitasking Operating System Multitasking Operating System has the ability to execute two or more of a single

user's task concurrently. Thus in Multitasking, a single job may contain two or more task that can execute concurrently in

multiprogramming mode. On a single CPU system, Multitasking allows number of processes to cooperate in achieving

an activity that can be parcelled into smaller concurrent activities. An internet browser that search for some information

is an example of a task. The computer user can switch back and forth between active task to see results, enter a new

request or data, etc. For microcomputer, Multitasking Operating System provide single user with multiprogramming

capabilities. This is often accomplished through foreground / background processing. Most modern operating system

like Windows, OS /2. UNIA, Macintosh System 7, etc support Multitasking. It is a fact that Multitasking is possible when the

operating system supports multiprogramming. In UNIX operating system, the user may specify multitasking by fallowing

a command with an ampersand (&). In this case shell does not work for the execution of the command to finish. It

immediately prompt for a new command while the previous command continue execution in the background. In order

to differentiate between Multiprogramming and Multitasking, we can say that Multiprogramming is interleaved execution

of multiple jobs in a multi-user system whereas Multitasking is interleaved execution of multiple jobs after referred as task

in a single-user system.

3.4.4 Time Sharing Operating System This operating system works in an interactive mode with a quick response time.

Time Sharing System allows simultaneous interactive use of a computer resource by many users in such a way that each

one feels

that he / she is the sole user of the system. It uses multiprogramming with a special CPU Scheduling Algorithm to

achieve this. In Time sharing System, the executive time is divided into small slots called 'time slice'. Each process is

process for a time slice and then the other process is taken for processing by the processor. This process goes on till all

the jobs are processed. This system contains many user terminals connected to the same computer, simultaneously.

Using these terminals, multiple users can work on the same system simultaneously. Multiprogramming feature allow

multiple user program to reside simultaneously in the main memory and CPU scheduling algorithm allo- cates time slice,

one by one to each user process. Figure 3.6 illustrate process state diagram of Time Sharing System.

Figure 3.6: Process state diagram for a Time Sharing System

As in Time Sharing System, time slice scheduling of CPU is used, the programs are executed with rotating priority which

increases during waiting and drops, after the service is granted. The operating system interrupts the programs which are

in execution, longer than system defined time slice, to prevent a program monopolizing the processor. Time Sharing

provides Memory Protection Mechanism to prevent a job's interaction and data from other job in a multiprogramming

environment. It has relatively large memory to support multiprogramming. File Management in this system provides

protection and access control. Job's state Preservation Mechanism and CPU Scheduling Algorithm are unique features of

this operating system. Although Time Sharing System are complex due to their large memory requirement, still they have

an edge over other system. This system helps in reducing CPU idle time. Its special CPU scheduling Algorithm ensures

quick response time to all users. This feature helps improving the programmer's efficiency by making interactive

programming and debugging much simpler and quicker.

3.4.5 Real Time Operating System Real Time Operating System is designed to respond to events that happen in

real time. They are used in environments, where a large number of events, mostly external to the computer system, must

be accepted and processed in short

time.

It is a computer system that require not only that computing results be correct but, also, that the results be produced

within a specific deadline.

Results produced after the deadline has passed, even if correct, may be of no real value.

Real Time system finds application in automobiles, aeroplane, home appliance like microwave oven and dishware's, in

consumers digital devices like cameras and MP3 player, etc.

A soft real time system is less restrictive and in it

critical real time task receives priority over other tasks and

it retains that priority until it completes.

For example, Linux provides soft real time support. A hard real time system has stringent requirement and in it critical real

time task is to

be completed within their deadlines. Safety critical systems are hard real time

system. The design of the

20 of 210 5/3/2023, 10:31 AM

Real Time Operating System reflects its single purpose nature and is often quite simple.

Their microprocessors are inexpensively mass produced. The main objective of R.T.O.S. is to provide quick response time.

Accordingly, the defining characteristics of the system are to support the time requirements of the real time tasks. Real

Time System meet the time requirement by using Scheduling algorithm that gives real time processes the highest

scheduling priorities. Also, the

schedulers must ensure that the priority of a real time task does not degrade over time.

The processor is normally allocated the highest priority process among those which are ready to execute, user convince

and resource utilization are of secondary concern. As there is a little swapping of program between primary and

secondary memory, the memory management is less demanding in this system, however, the processes tend to provide

protection and sharing of the memory. Real Time System provides sophisticated form of interrupt management and I / O

buffering. As compare to file management, concern is on the speed of access rather than efficient utilization of the

secondary storage.

3.4.6 Multiprocessor Operating System Multiprocessor system is that system which is composed of several independent

processors. These processors operate in parallel, thereby allowing, simultaneous execution of several programs or of

several parts of the same program. Basic organisation of Multiprocessing system is given in Figure 3.7.

I/O Units I/O Units I/O Procesors I/O Procesors Main Memory P2 P1

Figure 3.7: Basic Organisation of Multiprocessing system

Multiprocessor System are of two types- (1) Loosely Coupled Multiprocessor System - In this system, the memory and

I/O units are attached to an individual processor. Thus, for each processor there is a local memory and an I/O unit

module. Hence, in this system no sharing of memory and I/O are permitted. The interprocessor communication is

achieved through messages. (2) Tightly Coupled Multiprocessor System - In this system, there is a single-wide primary

memory shared by all processors. Hence shared memory access is permitted and a word-by-word interaction among

communicating process is possible. Thus tightly coupled multiprocessor system provides means to share information

interchange and synchronization among processes through a shared location. Multiprocessing offers data processing

capabilities that are not present when only one CPU is used.

Multiprocessing System have better performance due to shorter response time and higher throughput. They have better

reliability, that is, if one of the processor break down, the other processor(s) takes over the system workload

automatically until the faulty processor is repaired. Thus in this system many complex operations can be performed at

the same time. Multiprocessing finds its application in rail control, traffic control, airways, etc. Multiprocessing System has

its limitation. These systems have high initial cost and their regular operation and maintenance is costlier than single

processor system. Also, designing of such system is very complex and time taking.

3.4.7 Distributed Operating

System A Distributed Operating System is a collection of loosely coupled processors that do not share memory.

These processors communicate with one another through various communication networks. Thus, this system allows

users to share resources on geographically dispersed hosts connected via a computer network.

75% MATCHING BLOCK 43/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

The processors in a Distributed System may vary in size and functions. They may include small microprocessor,

workstation, minicomputer and large general purpose computer

75% MATCHING BLOCK 44/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245827)

The processors in a Distributed System may vary in size and functions. They may include small microprocessor,

workstation, minicomputer and large general purpose computer

system.

A general structure of a Distributed System is shown in Figure 3.8.

Figure 3.8: A Distributed System

21 of 210 5/3/2023, 10:31 AM

Resource sharing in a Distributed System provides mechanism for sharing files at the remote site, processing information

in a distributed database, printing files at the remote sites and performing various other operations. This system allows us

to distribute the sub computations among the various sites, which run concurrently, thereby providing computations

speedup. Distributed System gives better reliability, that is,

if one site fails in this system, the remaining sites can continue operating.

As

several sites are connected to one another by a communication network,

the users at different sites have the opportunity to exchange information's. The Distributed Systems are widely accepted

by the Industry because of better user interface, more flexibility in locating resources and expanding facilities and easier

maintenance.

3.4.8 Special Operating System (1) Embedded

Operating System: Embedded Systems are the most prevalent form of the computer system in existence. These systems

tend to have very specific tasks. In these systems there is a

little or no user interface, preferring to spend their

time monitoring and managing hardware devices such as automobile engines and robotic arms.

These Embedded Systems

vary considerably. Some are general purpose computers, running standard operating system, like

UNIX, with special purpose application to implement the functionality. Others are hardware devices with

a special purpose embedded operating system.

Embedded System find its use in controlling heating and lighting, alarm systems, etc of a house through a central

computer which may be general purpose computer or an embedded one. Embedded System, almost, always run real

time operating systems. (2) Hand Mobile O.S. or Handheld O.S. This type of system includes

personal digital assistants (PDAs), such as Palm and Pocket-PCs and cellular telephones, many of which

are using special purpose embedded

operating

system. Devices using handheld system are small in size due to which they have small amount of memory, slow

processor and small display screens. On using virtual memory techniques, the devices making use of handheld system

can manage the memory efficiently. Also, most of the device using this system uses small battery due to which speed of

the processor is slow.

Some handheld devices use wireless technology such as Blue tooth allowing remote access to e-mail and web

browsing. Cellular Telephones with connectivity to the internet fall

in this category.

The Mobile Operating System or Handheld System controls a mobile device or information appliance similar in principle

to an operating system such as Windows, Mac OS X, Linux distributed system that control a desktop computer or a

Laptop. The popular mobile operating systems running on smart phones, PDAs, tablet computer etc. are (1) Android from

Google, which is a Linux derived operating system (2) Symbian from Nokia which supports multiple user interfaces. (3)

Blackberry operating system from RIM. (4) Web operating system from HP, initially developed by Palm.

3.5 Summary In this unit we have trace the evolution of the operating systems. We have discussed the different types of

operating system on the basis of their design, process management, file management and memory management. The

main objective of all the discussed operating systems was to reduce the CPU idle time and enhances the efficiency of the

system. Besides this the operating system provided its user with an interface that is easier to use than the bare machine.

Efficiency of an operating system and overall performance of a computer system are usually measured in terms of its

throughput, turnaround time and response time.

Self Assessment Questions 1. How was a job typically executed in early computer system? 2. What are control

statements? Why they are needed ? 3. What is Batch Processing? 4. Differentiate between uniprogramming and

multiprogramming system. 5. Draw basic organization diagram of multiprocessing system. 6. Define Time Slice. 8. What

is Time Sharing? 9. Differentiate between Multiprogramming and Multiprocessing processing. 10. What is Multitasking

Processing? 11.

Define the essential properties of the following types of operating

system: (a) Real Time (b) Time Sharing (c) Distributed (d) Handheld (e) Multiprogrmming (f)

Multitasking (g) Multiprocessing (h) Embedded

22 of 210 5/3/2023, 10:31 AM

Unit 4: Process Management

4.1

Objective

After studying

this unit you will be able to define the concept of

a process,

the process

state, control switching and process control block. You will be able to understand how a process is created and

terminated. Also, you will go through the basics of inter-process communication and Client -Server System.

4.2 Introduction In

early computer systems only one program was executed at a time. This program had the access to the system's

all resources. Today, the computer system allows the multiple programs to run concurrently. This evolution along with

the complexity of the operating system requires firmer control and more compartmentalization of various programs.

Hence, a separate module of Process Management was developed. This module takes care of creation and termination

of processes, scheduling of system resources to different processes requesting them and providing mechanism for

synchronization and communication among various processes. We may define a process as a program in execution. In

other words, process is a running program with some specific tasks to perform.

64% MATCHING BLOCK 48/301 OS_SLM_Revised.pdf (D155071872)

For example, a word processing program being run by an individual user on computer is a process 4.3

Introduction to Processes A process is defined as a program in execution performing certain task allotted to it. For

example a time sharing user program such as compiler is a process. Shell or command interpreter,

in UNIX operating system, is a process, performing the task of listening to whatever is typed on

a terminal.

A process needs resources, including CPU time, memory files and input/output

devices to perform its task.

These resources are either given to the process when it is created

or

allocate to it while

running. During creation, various initialization data may be passed.

When the process terminates, the operating system will reclaim any reusable resources.

In a system, a process is unit of work. As system is collection of processes, including both, user processes and operating

system processes, all these processes can be executed concurrently.

A process is an 'active' entity whereas a program is a 'passive' entity.

Process, includes current activity along with

85% MATCHING BLOCK 45/301

the contents of the processor's registers. A process, also include, the process stack

containing

the primary data and a data section containing global variables. Also, a process may contain a memory known as heap

which is allocated during process run time. More than one process

associated with the same program is considered separate execution sequences. For example, multiple users running

different copies of the mail program.

4.4

Process

23 of 210 5/3/2023, 10:31 AM

100% MATCHING BLOCK 46/301

State The state of a process is defined in part by the current activity of that process.

During execution, a process changes its state. Depending on the implementation, the operating systems may differ in the

number of states a process goes through.

66% MATCHING BLOCK 47/301

Each process may be in one of the following five states: 01 New State The process being created 02 Running

State The

90% MATCHING BLOCK 49/301

instructions are being executed. 03 Waiting State The process is waiting for some event to occur,

82% MATCHING BLOCK 50/301

instructions are being executed. 03 Waiting State The process is waiting for some event to occur, for instance an I/O

completion or reception of a signal.

In this state a process is unable to proceed until some external events happen. 04

Ready State

91% MATCHING BLOCK 51/301

The process is waiting to be assigned to a processor. 05 Terminated State The process has finished execution.

It should be remembered that at any instance, only one process can be running on any processor.

The five state process model is given below in Figure 4.1.

Figure 4.1: Process State Model

4.5

Process Control Block Process control block is the representation of a process in the operating system. This block, also

known as task control block, is collection of process attributes needed by the operating system to control a process. A

schematic diagram of the

Process Control Block is shown in Figure 4.2.

96% MATCHING BLOCK 52/301

Process state Process number Program counter Registers Memory limits List of open files

96% MATCHING BLOCK 53/301

Process state Process number Program counter Registers Memory limits List of open files

Figure 4.2:

Process Control Block The following are the various attributes associated with a specific process in the

Process Control Block : 1

24 of 210 5/3/2023, 10:31 AM

Program Counter It depicts

100% MATCHING BLOCK 55/301 Operating System.pdf (D30089487)

the address of the next instruction to be executed for this process. 2 Process

State It may be new, waiting ready, running and so on. 3 CPU Registers They include accumulator, index registers, stack

pointers and the general purpose registers. 4

86% MATCHING BLOCK 54/301

CPU Scheduling information It includes a process priority, pointers to scheduling queues, and other scheduling

parameters. 5 Memory Management

Depending on the memory used by the Information operating system it includes value of the base & limit registers, page

table or segment table. 6 Accounting Information It includes time limit, account numbers,

amount of CPU and real time used, and so on. 7 I/O Status Information It

includes list of I/O devices allocated to the process, list of open files, and so on.

4.6

Context Switching The operating system changes the current task of a CPU if interrupt occurs. This allows the system to

schedule all processes in the main memory to run on the CPU at equal intervals.

80% MATCHING BLOCK 57/301 COOS.docx (D142533740)

When an interrupts occurs, the system needs to save the current context of the process

80% MATCHING BLOCK 58/301 COOS.docx (D142535190)

When an interrupts occurs, the system needs to save the current context of the process

100% MATCHING BLOCK 56/301 OS_Notes_Full.pdf (D108987417)

occurs, the system needs to save the current context of the process

currently

100% MATCHING BLOCK 59/301 OS_Notes_Full.pdf (D108987417)

running on the CPU so that it can restore that context when its

process is done.

The context is represented in the

Process Control Box

100% MATCHING BLOCK 60/301 OS_Notes_Full.pdf (D108987417)

of the process. It includes the value of the CPU registers, the process state

and the memory management information.

25 of 210 5/3/2023, 10:31 AM

The switching of

86% MATCHING BLOCK 61/301 OS_Notes_Full.pdf (D108987417)

the CPU to another process requires performing a state save of the current process and a state restore of a different

process. This task is known as Context Switching. During context switching, the kernel saves the context of the old

process in its PCB and loads the context of the new process scheduled to run.

Let us understand with the help of an example. Suppose if two processes P0 and P1 are in ready queue. If CPU is

executing Process P0 and Process P1 is in wait state. If an interrupt occurs for Process P0, the operating system suspends

the execution of the first process, and stores the current information of Process P0 in its PCB and switch to

the second process namely Process P1. In doing so, the program counter from the PCB

of Process P1 is loaded, and thus execution can continue with the new process. The switching between two processes,

Process P0 and Process P1 is illustrated in the Figure 4.3 :

Figure 4.3: Diagram showing Process Switching

The context switching time depends on the memory speed and the number of registers that must be copied. They are

dependent on hardware support, also.

4.7 Process Creation and Termination There are four principal events that cause a process to be created: •

System initialization. • Execution of process creation system call by running a process. • A user request to create a new

process. • Initiation of a batch job.

When an operating system is booted, typically several processes are created. Some of these are foreground processes,

that interact with a (human) user and perform work for them. Others are background processes, which are not

associated with particular users, but instead have some specific function. For example, one background process may be

designed to accept incoming e-mails, sleeping most of the day but suddenly springing to life when an incoming e-mail

arrives. Another background process may be designed to accept an incoming request for web pages hosted on the

machine, waking up when a request arrives to service that request. Process creation in UNIX and Linux are done through

fork() or clone() system calls. There are several steps involved in process creation. The first step is the validation of

whether the parent process has sufficient authorization to create a process. Upon successful validation, the parent

process is copied almost entirely, with changes only to the unique process-id, parent process, and user-space. Each new

process gets its own user space.

67% MATCHING BLOCK 63/301 COOS.docx (D142533740)

During the execution, a process may create several new processes. The process which creates several new processes

is called Parent process while the

new ones are called children of that process.

Each of these new processes in turn

may create other processes, thereby, forming a Tree of processes. A typical process tree for the Solaris Operating System

is illustrated in the Figure 4.4. Processes are identified by

a unique Process Identifier (PID), which is an integer number.

Figure 4.4: A

tree of processes on a Solaris system

In Solaris operating system,

the process at the top of the tree is called sched process with pid 0. The shed process creates several children processes

that are responsible for managing memory and file systems. The child process includes

pageout and fsflush.

The sched process creates the init process which serves as the root parent process for all user processes.

Inetd and dlogin are the

two children of init. inetd is responsible for networking services, whereas dlogin is the process representing a user login

screen.

26 of 210 5/3/2023, 10:31 AM

When a user logs in, dtlogin creates an X-Window session, which in turns creates the sdt_shel process.

Below sdt_shel, a user's command line shell - csh is created. It is this command-line interface where the user then

invokes various child processes such as the 1s and cat commands.

csh process with pid of 7768 represent a user who has logged onto the system using

telnet.

84% MATCHING BLOCK 64/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

When a process creates a sub process, that sub process can either obtain its resources directly from the operating

system or it may be constrained to a subset of the resources of the parent process.

84% MATCHING BLOCK 67/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245827)

When a process creates a sub process, that sub process can either obtain its resources directly from the operating

system or it may be constrained to a subset of the resources of the parent process.

100% MATCHING BLOCK 62/301

obtain its resources directly from the operating system or it may be constrained to a subset of the resources of the

parent process.

Overloading of the system due to processes is prevented by

100% MATCHING BLOCK 65/301

restricting a child process to a subset of the parent's resources.

When the process

97% MATCHING BLOCK 66/301

finishes executing its final statement and asks the system to delete it by using the exit () system call,

88% MATCHING BLOCK 68/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

finishes executing its final statement and asks the system to delete it by using the exit () system call,

a process terminates.

At that point the process may return a status value - an integer

55% MATCHING BLOCK 71/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

to its parent process. All the resources of the process, whether physical or virtual memory, open files, and input/ output

devices are de-allocated by the operating system.

A process can terminate another process through appropriate system call,

for example,

Terminate Process()

27 of 210 5/3/2023, 10:31 AM

in Win32. The parent of the process can only invoke a system call to terminate the process. Otherwise, users could

arbitrary kill each other's job. When a

process creates a new process the identity of the newly created process is passed to

the parent.

66% MATCHING BLOCK 69/301

A parent may terminate the execution of one of its children if the child has exceeded its usage of some of its resource

or the task assigned to the child is no longer required.

There are

some systems who

do not allow child to exist if its parent has terminated.

In

76% MATCHING BLOCK 70/301

such systems, if a process terminates than all its children must also be terminated. This

type of termination is called Cascading Termination.

4.8 Basics of Interprocess Communication (IPC) There are two ways in which the processes execute concurrently -

independent processes or cooperating processes. Independent process is the process which

67% MATCHING BLOCK 72/301

cannot affect or be affected by the other processes. Thus independent process does not share its data with any other

67% MATCHING BLOCK 73/301

cannot affect or be affected by the other processes. Thus independent process does not share its data with any other

processes. Cooperating process is the process which can affect or be affected by the other processes. In other words,

we can say that cooperating process are those which share their data with other processes. Various salient features of

cooperating process are Information sharing, computation speedup, modularity and convenience. Interprocess

Communication Mechanism is generally required by cooperating process as it allows it to exchange information and

data. Shared Memory and Message Passing are the two fundamental systems used in the interprocess communication. In

Share Memory System, after establishing the memory region to be shared by the cooperating process, exchange of

information takes place by means of reading and writing data to the shared region. For example, the producer-consumer

problem, where, a producer process produces information which is consumed by the consumer process.

100% MATCHING BLOCK 75/301 INF_1036.pdf (D164968063)

In Message Passing System, communication takes place by means of messages exchanged between the cooperating

processes.

100% MATCHING BLOCK 74/301

communication takes place by means of messages exchanged between the cooperating processes.

28 of 210 5/3/2023, 10:31 AM

For example, a chat program used on the world wide web

could be designed so that chat participants communicate with one another by exchanging messages.

Generally, two operations are provided in the message passing model - send (message) and receive (message). Shared

memory allows maximum speed and convenience of communication whereas message passing is useful for exchange

of smaller data. In shared memory model, system calls are required to establish the

shared- memory region. Once it

is established, all accesses are treated as routine memory accesses and no help from kernel is required.

In

message passing

model, the message passing system are implemented using system call, which results in more time consuming task of

kernel intervention.

4.9 Basics of Communication in Client-Server Systems Communication in the

client - server systems may use sockets, remote procedure calls (RPCs)

and java's remote method invocation (RMI).

We will be giving here brief out lines of the three.

Sockets

A socket is defined as an endpoint for communication. A

pair of

sockets - one for each process, is employed

for

a pair of processes communicating over a network. A socket is identified by an IP address concatenated with a port

number.

When a client process initiates a request for a connection, it is assigned a port by

the

host computer. This port is some arbitrary number greater than 1024. For instance, if a client on

the host A

with IP address 136.86.5.20

wishes to establish a connection with a web server (which is listening on port 70) at address 151.25.18.4,

host

A

may be assigned port 1525.

The connection will consist of a pair of sockets: (136.86.5.20:1525) on

the

host A

and (151.25.18.4:70) on the web server. The information travelling between the hosts are delivered to appropriate process

based on the destination port number.

Care is to be taken to ensure

that all connections consist of a unique pair of sockets.

Remote Procedure Call (RPCs)

RPCs are another form of distributed communication.

An RPC occurs when a process calls a procedure on a remote application.

Here message

based communication scheme is used to provide remote service. The important characteristics of RPCs are : • They

provide a very familiar interface for the application developer • Way of implementing the commonplace request-reply

primitive • The format of the messages is standard, not application dependent • They make it easier to reuse code, since

the RPCs have a standard interface and are separate from any one application-proper.

The messages exchanged in RPC communication are well structured.

Each message is address to an RPC daemon listening to a port on the remote system and each contains an identifier

of

the function to execute and the parameters to pass to that function.

The

29 of 210 5/3/2023, 10:31 AM

execution of the function takes place according to the request. After that, in a separate message, an output is sent back

to the requester.

A system generally has one network address. It can have many ports to differentiate the many network services it

supports.

If a remote process needs a service, it sends a message to the proper port.

Suppose a system

allows the other system to share information about its current user, then it would have a daemon supporting such a

RPC attached to a port, say 3125.

Any remote system could obtain the needed information by sending an RPC message to

the concerned port, that is, 3125 on the server. The desired information would be received in the reply message. The RPC

system provides stub on the client side which hides the details that allow communication to take place. Each separate

remote procedure has a separate stub. RPC system calls the appropriate stub when a client invokes a remote procedure.

This particular

stub locates the port on the server and packages the parameters into a form which can be transmitted over a network.

After that, the stub transmits a message to the server using message passing.

The counter

stub on the server side receives this message and invokes the procedure on the server.

If

required, the return value in the form of output is passed back to the client using same procedure. In the Figure 4.5 there

is illustration of Remote Procedure Calls. Figure 4.5: Illustration of Remote Procedure Call It must be ensured

that messages are acted on 'exactly once' rather than 'at most once'

because if local procedure call fail, RPC

can fail

or be duplicated and executed more than once as a result of common network errors.

Remote Method Invocation (RMI) Remote method invocation is java version of remote procedure call. The original

implementation depends on Java Virtual Machine (JVM) class representation mechanisms and it thus only supports

making calls from one JVM to another. The protocol underlying this Java-only implementation is known as Java Re-

mote Method Protocol (JRMP). In order to support code running in a non-JVM context, a CORBA version was later

developed.

RMI allows a thread to invoke a method on a remote object. The

objects are considered remote if they reside in a different java virtual machine. Hence, on the same computer or on the

remote host connected by network, these objects may reside on different java virtual machine. Two basic differences

between RPC and RMI are: 1. RMI is object based and it supports invocation of methods on remote objects, whereas,

RPCs support procedural programming, in which

only remote procedures or functions can be called. 2. In RMI, it is possible to pass objects as parameters to remote

methods,

whereas, in RPCs, the parameters to remote procedures are ordinary data structures

Remote Method Invocation

implements the remote object using stubs and skeletons. When a client invokes a remote method, the stub -

a proxy for the remote object, on the client side, is called. This particular stub creates a parcel containing

the name of the method to be invoked on the server

and marshalled

the parameters for the method. The stub then sends this parcel to the server where skeleton for the remote object

receives it. This skeleton

unmarshalled the parameters and invokes the desired method on the server. The skeleton, then marshal the return value

into a parcel and return it to the client where the stub on the client side unmarshals the return value and pass it to the

client. In the figure 4.6 illustration of Remote Method Invocation is given.

4.9 Summary Process Management takes care of creation and termination of processes, scheduling of system resources

to different processes requesting them and providing mechanism for synchronization and communication among

various processes.

A process is a program in execution. A process changes its state on execution.

30 of 210 5/3/2023, 10:31 AM

The state of a process is defined by that process's current activity.

The various state of a process are running,

88% MATCHING BLOCK 76/301 OS_SLM_Revised.pdf (D155071872)

new, ready, waiting or terminated. Each process is represented in the operating system by its own Process Control

Box.

The PCBs can be linked together to form a ready queue.

The processes executing in the operating system are of two types - Independent processes and Cooperation processes.

Shared Memory and Message Passing are the two fundamental models used in the interprocess communication.

Communication in the

client - server systems may use sockets, remote procedure calls (RPCs)

and java's remote method invocation (RMI).

Self Assessment Questions 1. Define the following: a. Process b. Process State c. Process Control Box 2. How a process is

created and terminated? 3. Briefly discuss the following: a. Shared Memory System b. Message Passing System c. Sockets

d. Remote Method Invocation (RMI) e. Remote Procedure Calls (RPCs) 4. Differentiate between independent process and

cooperation process. 5. Differentiate between RMI and RPCs. 6. Briefly discuss various process states. 7. escribe

the actions taken by the kernel to context switch between processes. 8. Explain the

major components of a process Unit 5: Theards

5.1

Objective

After reading this unit, you will be able to understand

general overview of thread, which is the fundamental unit of CPU utilization, different thread libraries and issues related

to multithreaded programming.

5.2 Introduction Traditionally, programs are single-path execution, hence a single thread. This practice would have made

the production of today’s software production impossible as the need of speed required programs to perform multiple

tasks and events at the same time. With traditional turn-by-turn game, such as tic-tac-toe or chess, the traditional

approach works fine, however with new age multitasking programs where multiple events need to run in parallel, the

traditional approach proves useless.

5.3 Threads

A thread is a single sequence stream within in

a process. Because threads have some of the properties of processes, they are sometimes called lightweight processes.

In a process, threads allow multiple executions of streams. In many respect,

threads are popular way to improve application through parallelism. The CPU switches rapidly back and forth among the

threads giving illusion that the threads are running in parallel.

Like a traditional process i.e., process with one thread, a thread can be in any of several states (Running, Blocked, Ready

or Terminated). Since thread will generally call different procedures and thus

will have

a different execution history. This is why thread needs its own stack.

A thread has a program counter (PC), a register set, and a stack

space. Threads

are not independent of one other like processes

and

as a result threads share with other their code section, data section, OS resources also known as task, such as open files

and signals

with other threads.

5.4 Processes Vs Threads

Processes are used to group resources together and threads are the entities scheduled for execution on the CPU.

We mentioned earlier that

31 of 210 5/3/2023, 10:31 AM

in many respect threads operate in the same way as processes. Some of the similarities and differences are: Similarities •

Like processes threads share CPU and only one thread active (running) at a time. • Like processes, threads within

a

processes, is execute sequentially. • Like processes, thread can create children. •

70% MATCHING BLOCK 77/301 OS_SLM_Revised.pdf (D155071872)

Like processes, if one thread is blocked, another thread can run. Differences • Unlike processes, threads

are not independent of one another. • Unlike processes, all threads can access every address in the task . • Unlike

processes,

thread is design

to assist one other. Note that processes might or might not assist one another because processes may originate from

different users.

Why Threads?

Threads are

cheap because 1.

They only need a stack and storage for registers therefore, threads are cheap to create. 2. Threads use very little

resources of an operating system

in which they are working.

That is, threads do not need new address space, global data, program code or operating system resources. 3. Context

switching

are

fast when working with threads. The reason is that we only have to save and/or restore PC, SP and registers.

Biggest drawback of threads

is that there is no protection between threads.

5.4.1

User-Level

Threads User-level threads implement in user-level libraries, rather than via systems calls, so thread switching does not

need to call operating system and to cause interrupt to the kernel. In fact,

the kernel knows nothing about user-level threads and manages them as if they were single-threaded processes.

Advantages: The most obvious advantage of this technique is that

user-level threads package can be implemented on an operating system that does not support threads.

Some other advantages are: •

User-level threads do

not require modification to operating systems. • Simple Representation : Each thread is represented simply by a PC,

registers, stack and a small control block, all stored in the user process address space. • Simple Management: This simply

means that creating a thread, switching between threads and synchronization between threads can all be done without

intervention of the kernel. • Fast and Efficient: Thread switching is not much expensive than a procedure call.

Disadvantages: •

There is a lack of coordination between threads and operating system kernel.

Therefore,

process

as whole gets one time slice irrespective of whether process has one thread or 1000 threads within. It is up to each

thread to relinquish control to other threads. •

User-level threads require non-blocking systems call i.e., a multithreaded kernel.

Otherwise, entire process will blocked in the kernel, even if there are runable threads left in the processes. For example, if

one thread causes a page fault, the process blocks.

5.4.2

Kernel-Level Threads

In this method, the kernel knows about and manages the threads.

32 of 210 5/3/2023, 10:31 AM

No runtime system is needed in this case.

Instead of thread table in each process,

73% MATCHING BLOCK 78/301 OS_SLM_Revised.pdf (D155071872)

the kernel has a thread table that keeps track of all threads in the system.

In addition, the kernel also maintains

the traditional

process table to keep track of processes.

Operating

system

kernel provides system call to create and manage threads. Advantages: • Because kernel has full knowledge of all

threads, scheduler may decide to give more time to a process having large number of threads than process having small

number of threads. • Kernel-level threads are especially good for applications that frequently block.

Disadvantages: • The kernel-level threads are slow and inefficient. •

Since

kernel must manage and schedule threads as well as processes. It require a full thread control block (TCB) for each

thread to maintain information about threads. As a result there is significant overhead and increase in kernel complexity.

Advantages of Threads over Multiple Processes • Context Switching Threads are very inexpensive to create and destroy,

and they are inexpensive to represent. For example, they require space to store, the PC, the SP, and the general- purpose

registers, but they do not require space to share memory information, information about open files of I/O devices in use,

etc. With so little context, it is much faster to switch between threads. In other words, it is relatively easier for a context

switch using threads. • Sharing Threads allow the sharing of a lot resources that cannot be shared in process, for

example, sharing code section, data section, operating system resources like open files etc. Disadvantages of Threads

over Multiprocesses •

Blocking The major disadvantage

is

that if the kernel is single threaded, a system call of one thread will block the whole process and CPU may be idle during

the blocking period. • Security Since there is, an extensive sharing among threads

there is a potential problem of

security. It is quite possible that one thread over writes the stack of another thread (or damaged shared data) although it

is very unlikely since threads are meant to cooperate on a single task.

Application that benefits from Threads A proxy server satisfying the requests for a number of computers on a LAN would

be benefited by a multi- threaded process. In general, any program that has to do more than one task at a time could

benefit from multitasking. For example, a program that reads input, process it, and outputs could have three threads, one

for each task.

Application that cannot Benefit from Threads Any sequential process that cannot be divided into parallel task will not

benefit from thread, as they would block until the previous one completes. For example, a program that displays the time

of the day would not benefit from multiple threads.

Resources used in Thread Creation and Process Creation When a new thread is created it shares its

78% MATCHING BLOCK 79/301 OS_SLM_Revised.pdf (D155071872)

code section, data section and operating system resources like open files with other threads.

But it is allocated its own stack, register set and a program counter. The creation of a new process differs from that of a

thread mainly in the fact that all the shared resources of a thread are needed explicitly for each process. So though two

processes may be running the same piece of code they need to have their own copy of the code in the main memory to

be able to run. Two processes also do not share other resources with each other. This makes the creation of a new

process very costly compared to that of a new thread.

33 of 210 5/3/2023, 10:31 AM

Context Switch To give each process on a multiprogrammed machine a fair share of the CPU, a hardware clock

generates interrupts periodically. This allows the operating system to schedule all processes in main memory (using

scheduling algorithm) to run on the CPU at equal intervals. Each time a clock interrupt occurs, the interrupt handler

checks how much time the current running process has used. If it has used up its entire time slice, then the CPU

scheduling algorithm (in kernel) picks a different process to run. Each switch of the CPU from one process to another is

called a context switch.

Major Steps of Context Switching • The values of the CPU registers are saved in the process table of the process that was

running just before the clock interrupt occurred. • The registers are loaded from the process picked by the CPU

scheduler to run next.

In a multiprogrammed uniprocessor computing system, context switches occur frequently enough that all processes

appear to be running concurrently. If a process has more than one thread, the Operating System can use the context

switching technique to schedule the threads so they appear to execute in parallel. This is the case if threads are

implemented at the kernel level. Threads can also be implemented entirely at the user level in run-time libraries. Since in

this case no thread scheduling is provided by the Operating System, it is the responsibility of the programmer to yield the

CPU frequently enough in each thread so all threads in the process can make progress.

Action of Kernel to Context Switch among Threads The threads share a lot of resources with other peer threads

belonging to the same process. So, a context switch among threads for the same process is easy. It involves switch of

register set, the program counter and the stack. It is relatively easy for the kernel to accomplished this task.

Action of Kernel to Context Switch among Processes Context switches among processes are expensive. Before a process

can be switched its process control block (PCB) must be saved by the operating system. The PCB consists of the

following information: • The process state. • The program counter, PC. • The values of the different registers. • The CPU

scheduling information for the process. • Memory management information regarding the process. • Possible accounting

information for this process. • I/O status information of the process.

When the PCB of the currently executing process is saved, the operating system loads the PCB of the next process that

has to be run on CPU. This is a heavy task and it takes a lot of time.

Threads are very useful in modern programming whenever a process has multiple tasks to perform independently of the

others. • This is particularly true when one of the tasks may block, and it is desired to allow the other tasks to proceed

without blocking. • For example in a word processor, a background thread may check spelling and grammar while a

foreground thread processes user input (keystrokes), while yet a third thread loads images from the hard drive, and a

fourth does periodic automatic backups of the file being edited. • Another example is a web server - Multiple threads

allow for multiple requests to be satisfied simultaneously, without having to service requests sequentially or to fork off

separate processes for every incoming request. (

The latter is how this sort of thing was done before the concept of threads was developed. A daemon would listen at a

port, fork off a child for every incoming request to be processed, and then go back to listening to

96% MATCHING BLOCK 81/301

the port.) Benefits There are four major categories of benefits to multi-threading: 1. Responsiveness - One thread may

provide rapid response while other threads are blocked or slowed down doing intensive calculations. 2. Resource

sharing - By default; threads share common code, data, and other resources, which allows multiple tasks to be

performed simultaneously in a single address space. 3. Economy - Creating and managing threads (and context

switches between them) is much faster than performing the same tasks for processes. 4. Scalability, i.e. utilization of

multiprocessor architectures - Asingle threaded process can only run on one CPU, no matter how many may be

available, whereas the execution of a multi-threaded application may be split amongst available processors. (

34 of 210 5/3/2023, 10:31 AM

100% MATCHING BLOCK 80/301 OS_Notes_Full.pdf (D108987417)

There are four major categories of benefits to multi-threading: 1. Responsiveness - One thread may provide rapid

response while other threads are blocked or slowed down doing intensive calculations. 2. Resource sharing - By

default; threads share common code, data, and other resources, which allows multiple tasks to be performed

simultaneously in a single address space. 3.

100% MATCHING BLOCK 82/301 OS_Notes_Full.pdf (D108987417)

is much faster than performing the same tasks for processes. 4. Scalability,

100% MATCHING BLOCK 83/301 OS_Notes_Full.pdf (D108987417)

threaded process can only run on one CPU, no matter how many may be available, whereas the execution of a multi-

threaded application may be split amongst available processors. (

Note that single threaded processes can still benefit from multi-processor architectures when there are multiple

processes contending for the CPU, i.e. when the load average is above some certain threshold.) Multicore Programming

• A recent trend in computer architecture is to produce chips with multiple cores, or CPUs on a single chip.

• A multi-threaded application running on a traditional single-core chip would have to interleave the threads, as shown in

Figure (5.1). On a multi-core chip, however, the threads could be spread across the available cores, allowing true parallel

processing, as shown in Figure (5.2).

Figure 5.1: Concurrent Execution on a

single core

system Figure 5.2 : Concurrent Execution on a multicore system

• For operating systems, multi-core chips require new scheduling algorithms to make better use of the multiple cores

available. • For application programmers, there are five areas where multi-core chips present new challenges: 1. Dividing

activities - Examining applications to find activities that can be performed concurrently. 2. Balance - Finding tasks to run

concurrently that provide equal value, i.e. don’t waste a thread on trivial tasks. 3. Data splitting - To prevent the threads

from interfering with one another. 4. Data dependency - If one task is dependent upon the results of another, then the

tasks need to be synchronized to assure access in the proper order. 5. Testing and debugging - Inherently more difficult

in parallel processing situations, as the race conditions become much more complex and difficult to identify.

5.5 Multi Threading Models • There are two types of threads to be managed in a modern system: user threads and

kernel threads. • User threads are supported above the kernel, without kernel support.

These are the threads that application programmers

would put into

their programs. • Kernel threads are supported within the kernel of the OS itself. All modern OSes support kernel level

threads, allowing the kernel to perform multiple simultaneous tasks and/or to service multiple kernel system calls

simultaneously. •

In a specific implementation, the

user threads must be mapped to kernel threads, using one of the following strategies.

5.5.1

35 of 210 5/3/2023, 10:31 AM

96% MATCHING BLOCK 84/301 OS_Notes_Full.pdf (D108987417)

Many-To-One Model • In the many-to-one model, many user-level threads are all mapped onto a single kernel thread.

• Thread management is handled by the thread library in user space, which is very efficient. • However, if a blocking

system call is made, then the entire process blocks, even if the other user threads would otherwise be able to continue.

• Because a single kernel thread can operate only on a single CPU, the many-to-one model does not allow individual

processes to be split across multiple CPUs. • Green threads for Solaris and GNU Portable Threads

implement

the

many-to-one model.

Figure 5.3: Many-To-One Model 5.5.2

97% MATCHING BLOCK 85/301 OS_Notes_Full.pdf (D108987417)

One-To-One Model • The one-to-one model creates a separate kernel thread to handle each user thread. • One-to-

one model overcomes the problems listed above involving blocking system calls and the splitting of processes across

multiple CPUs. • However the overhead of managing the one-to-one model is more significant, involving more

overhead and slowing down the system. • Most implementations of this model place a limit on how many threads can

be created. • Linux and Windows from 95 to XP

implement

the one-to-one model for threads.

Figure 5.4:

One-To-One Model

5.5.3

90% MATCHING BLOCK 87/301 OS_Notes_Full.pdf (D108987417)

Many-To-Many Model • The many-to-many model multiplexes any number of user threads onto an equal or smaller

num ber of kernel threads, combining the best features of the one-to-one and many-to-one models. • Users have no

restrictions on the number of threads created. • Blocking kernel system calls do not block the entire process. •

Processes can be split across multiple processors. • Individual processes may be allocated variable numbers of kernel

threads, depending on the num ber of CPUs present and other factors.

Figure 5.5 : Many-To-Many Model • One popular variation of the many-to-many model is the two-tier model, which

allows either many-to-many or one-to-one operation. • IRIX, HP-UX, and Tru64 UNIX use the two-tier model, as did

Solaris prior to Solaris 9.

Figure 5.6 : Two Level Model

5.5 Thread Libraries

Thread libraries provide programmers with an

API for creating and managing threads. Thread libraries

may be implemented either in user space or in kernel space. The former involves API functions implemented solely

within user space, with no kernel support. The latter involves system calls and requires a kernel with thread library

support. There are

three

main thread libraries in use today: 1.

POSIX Pthreads - may be provided as either a user or kernel library,

36 of 210 5/3/2023, 10:31 AM

as an extension to the POSIX standard. 2. Windows 2000 threads - provided as a kernel-level library on Windows

systems. 3. Java threads - Since Java generally runs on a Java Virtual Machine, the implementation of threads is based

upon whatever OS and hardware the JVM is running on, i.e. either Pthreads or Win32 threads depending on the system. •

The following sections will demonstrate the use of threads in all three systems for calculating the sum of integers from 0

to N in a separate thread, and storing the result in a variable “sum”.

5.5.1 Pthreads • The POSIX standard (IEEE 1003.1c) defines the specification for pThreads, not the implementation. •

pThreads are available on Solaris, Linux, Mac OSX, Tru64, and via public domain shareware for Windows. • Global

variables are shared amongst all threads. • One thread can wait for the others to rejoin before continuing. • pThreads

begin execution in a specified function, in this example the runner() function:

5.5.2

Java Threads o All Java programs use threads - even “common” single-threaded ones. o Java threads are managed by

the JVM o Java threads may be created by: • Extending Thread class • Implementing the runnable interface o The

creation of new threads requires objects that implement the runnable Interface, which means they contain a method

“public void run()” . Any descendant of the Thread class will naturally contain such a method. (In practice the run()

method must be overridden / provided for the thread to have any practical functionality.) o Creating a Thread Object

does not start the thread running - To do that the program must call the Thread’s “start()” method. Start() allocates and

initializes memory for the Thread, and then calls the run() method. (Programmers do not call run() directly.) Because

Java does not support global variables, threads must pass a reference to a shared object in order to share data, in this

example the “Sum” Object.

Note that the JVM runs on top of a native OS, and that the JVM specification does not specify what model to use for

mapping Java threads to kernel threads. This decision is JVM implementation dependant, and may be one-to-one,

many-to-many, or any of the other models discussed previously. Fig. 5.7 Operating System Examples

5.5.3 Windows 2000 Threads • Implements the one-to-one mapping • Each thread contains o A thread id

o Register set o Separate user and kernel stacks o

Private data storage area •

The register set, stacks, and private storage area are known as the context of the threads • The primary data structures of

a thread include:

o

ETHREAD (executive thread block)

o

KTHREAD (kernel thread block) o TEB (thread environment block) 5.5.4

Linux Threads • Linux does not distinguish between processes and threads - It uses the more generic term “tasks”. • The

traditional fork() system call completely duplicates a process (task). An alternative system call, clone() allows for varying

degrees of sharing between the parent and child tasks, controlled by flags such as those shown in the following table:

flag Meaning CLONE_FS File-system information is shared CLONE_VM The same memory space is shared

CLONE_SIGHAND Signal handlers are shared CLONE_FILES The set of open files is shared •

Calling clone()with no flags set is equivalent to fork(). Calling clone() with CLONE_FS, CLONE_VM, CLONE_SIGHAND,

and CLONE_FILES is equivalent to creating a thread, as all of these data structures will be shared. • Linux implements this

using a structure task_struct, which essentially provides a level of indirection to task resources. When the flags are not

set, then the resources pointed to by the structure are copied, but if the flags are set, then only the pointers to the

resources are copied, and hence the resources are shared. • clone() allows a child task to share the address space of the

parent task (process) • Several distributions of Linux now support the NPTL (Native POSIX Thread Library) • POSIX

compliant. • Support for SMP (symmetric multiprocessing), NUMA (non-uniform memory access), and multicore

processors. • Support for hundreds to thousands of threads.

5.5 Thread Issues 5.5.1 The fork() and exec() System Calls • Q: If one

thread forks, is the entire process copied, or is the new process single-threaded? •

A: System dependant. • A: If the

new process execs right away, there is no need to copy all the other threads. If it doesn’t, then the entire process should

be copied. •

A: Many versions of UNIX provide multiple versions of the fork call for this purpose. 5.5.2

Cancellation •

37 of 210 5/3/2023, 10:31 AM

Threads that are no longer needed may be cancelled by another thread in one of two ways: o Asynchronous

Cancellation

cancels the thread immediately.

o

Deferred Cancellation sets a flag indicating the thread should cancel itself when it is convenient. It

is then up to

the cancelled thread to check this flag periodically and exit nicely when it sees the flag

set. • (Shared) resource allocation and inter-thread data transfers can be problematic with asynchronous cancellation.

5.5.3

Signal Handling • Q: When a multi-threaded

process receives a signal, to what thread should that signal be

delivered? • A: There are four major

options: •

95% MATCHING BLOCK 86/301

Deliver the signal to the thread to which the signal applies. • Deliver the signal to every thread in the process. • Deliver

the signal to certain threads in the process. • Assign a specific thread to receive all signals

in a process. •

The

best choice may depend on which specific signal is involved. • UNIX allows individual threads to indicate which signals

they are accepting and which they are ignoring. However, the signal can only be delivered to one thread, which is

generally the first thread that is accepting that particular signal. • Windows does not support signals, but they can be

emulated using Asynchronous Procedure Calls (APCs). APCs are delivered to specific threads, not processes.

5.5.4 Thread Pools • Creating new threads every time one is needed and then deleting it when it is done can be

inefficient and can also lead to a very large (unlimited) number of threads being created. • An alternative solution is to

create a number of threads when the process first starts and put those threads into a thread pool. • Threads are allocated

from the pool as needed and returned to the pool when no longer needed. • When no threads are available in the pool,

the process may have to wait until one becomes available. • The (maximum) number of threads available in a thread pool

may be determined by adjustable parameters, possibly dynamically in response to changing system loads. • Win32

provides thread pools through the “

Pool Function” function.

Java also provides support for thread pools.

5.5.5 Thread-Specific Data •

Most data is shared among threads, and this is one of the major benefits of using threads in the first place. • However

sometimes threads need thread-specific data also. • Most major thread libraries (pThreads, Win32, Java) provide support

for thread-specific data.

5.5.6

Scheduler Activations • Many implementations of threads provide a virtual processor as an interface between the user

thread and the kernel thread, particularly for the many-to-many or two-tier models. • This virtual processor is known as a

“Lightweight Process”, LWP. • There is a one-to-one correspondence between LWPs and kernel threads. • The number of

kernel threads available, (and hence the number of LWPs) may change dynamically. • The application (user level thread

library) maps user threads onto available LWPs. • kernel threads are scheduled onto the real processor(s) by the OS. • The

kernel communicates to the user-level thread library when certain events occur (such as a thread about to block) via an

upcall, which is handled in the thread library by an upcall handler. The upcall also provides a new LWP for the upcall

handler to run on, which it can then use to reschedule the user thread that is about to become blocked. The OS will also

issue upcalls when a thread becomes unblocked, so the thread library can make appropriate adjustments. • If the kernel

thread blocks, then the LWP blocks, which blocks the user thread. • Ideally there should be at least as many LWPs

available as there could be concurrently blocked kernel threads. Otherwise if all LWPs are blocked, then user threads will

have to wait for one to become available.

38 of 210 5/3/2023, 10:31 AM

Figure 5.8: Light Weight Process (LWP)

5.6 Thread Scheduling Scheduling Threads Threads can be scheduled, and the threads library provides several facilities to

handle and control the scheduling of threads. It also provides facilities to control the scheduling of threads during

synchronization operations such as locking a mutex. Each thread has its own set of scheduling parameters. These

parameters can be set using the thread attributes object before the thread is created. The parameters can also be

dynamically set during the thread’s execution. Controlling the scheduling of a thread can be a complicated task. Because

the scheduler handles all threads systemwide, the scheduling parameters of a thread interact with those of all other

threads in the process and in the other processes. The following facilities are the first to be used if you want to control

the scheduling of a thread. The threads library allows the programmer to control the execution scheduling of the threads

in the following ways: • By setting scheduling attributes when creating a thread • By dynamically changing the scheduling

attributes of a created thread • By defining the effect of a mutex on the thread’s scheduling when creating a mutex

(known as synchronization scheduling) • By dynamically changing the scheduling of a thread during synchronization

operations (known as synchronization scheduling) Scheduling Parameters A thread has the following scheduling

parameters: Scope The contention scope of a thread is defined by the thread model used in the threads library. Policy

The scheduling policy of a thread defines how the scheduler treats the thread after it gains control of the CPU. Priority

The scheduling priority of a thread defines the relative importance of the work being done by each thread.

The scheduling parameters can be set before the thread’s creation or during the thread’s execution. In general,

controlling the scheduling parameters of threads is important only for threads that are CPU- intensive. Thus, the threads

library provides default values that are sufficient for most cases.

Contention Scope and Concurrency Level The contention scope of a user thread defines how it is mapped to a kernel

thread. The threads library defines the following contention scopes:

PTHREAD_SCOPE_PROCESS

Process contention scope, sometimes called local contention scope. Specifies that the thread will be scheduled against

all other local contention scope threads in the process. A process-contention-scope user thread is a user thread that

shares a kernel thread with other process-contention-scope user threads in the process. All user threads in an M:1 thread

model have process contention scope. PTHREAD_SCOPE_SYSTEM System contention scope, sometimes called global

contention scope. Specifies that the thread will be scheduled against all other threads in the system and is directly

mapped to one kernel thread. All user threads in a 1:1 thread model have system contention scope.

In an M:N thread model, user threads can have either system or process contention scope. Therefore, an M:N thread

model is often referred as a mixed-scope model. The concurrency level is a property of M:N threads libraries. It defines

the number of virtual processors used to run the process-contention scope user threads. This number cannot exceed

the number of process-contention-scope user threads and is usually dynamically set by the threads library. The system

also sets a limit to the number of available kernel threads.

Setting the Contention Scope The contention scope can only be set before a thread is created by setting the contention-

scope attribute of a thread attributes object. The pthread_attr_setscope subroutine sets the value of the attribute; the

pthread_attr_getscope returns it. The contention scope is only meaningful in a mixed-scope M:N library implementation.

A TestImplementation routine could be written as follows: int TestImplementation() { pthread_attr_t a; int result;

pthread_attr_init(&a); switch (pthread_attr_setscope(&a, PTHREAD_SCOPE_PROCESS)) { case 0: result = LIB_MN; break;

case ENOTSUP: result = LIB_11; break; case ENOSYS: result = NO_PRIO_OPTION; break; default: result = ERROR; break;

} pthread_attr_destroy(&a); return result; }

39 of 210 5/3/2023, 10:31 AM

Impacts of Contention Scope on Scheduling The contention scope of a thread influences its scheduling. Each

contention-scope thread is bound to one kernel thread. Thus, changing the scheduling policy and priority of a global

user thread results in changing the scheduling policy and priority of the underlying kernel thread. In AIX®, only kernel

threads with root authority can use a fixed-priority scheduling policy (FIFO or round-robin). The following code will

always return the EPERM error code if the calling thread has system contention scope but does not have root authority.

This code would not fail, if the calling thread had process contention scope. schedparam.sched_priority = 3;

pthread_setschedparam(pthread_self(), SCHED_FIFO, schedparam); Using the inheritsched Attribute The inheritsched

attribute of the thread attributes object specifies how the thread’s scheduling attributes will be defined. The following

values are valid: PTHREAD_INHERIT_SCHED Specifies that the new thread will get the scheduling attributes (schedpolicy

and schedparam attributes) of its creating thread. Scheduling attributes defined in the attributes object are ignored.

PTHREAD_EXPLICIT_SCHED Specifies that the new thread will get the scheduling attributes defined in this attributes

object.

The default value of the inheritsched attribute is PTHREAD_INHERIT_SCHED. The attribute is set by calling the

pthread_attr_setinheritsched subroutine. The current value of the attribute is returned by calling the

pthread_attr_getinheritsched subroutine. To set the scheduling attributes of a thread in the thread attributes object, the

inheritsched attribute must first be set to PTHREAD_EXPLICIT_SCHED. Otherwise, the attributes-object scheduling

attributes are ignored. Scheduling Policy and Priority The threads library provides the following scheduling policies:

SCHED_FIFO First-in first-out (FIFO) scheduling. Each thread has a fixed priority; when multiple threads have the same

priority level, they run to completion in FIFO order. SCHED_RR Round-robin (RR) scheduling. Each thread has a fixed

priority; when multiple threads have the same priority level, they run for a fixed time slice in FIFO order. SCHED_OTHER

Default AIX® scheduling. Each thread has an initial priority that is dynamically modified by the scheduler, according to

the thread’s activity; thread execution is time-sliced. On other systems, this scheduling policy may be different.

The threads library handles the priority through a sched_param structure, defined in the sys/ sched.h header file. This

structure contains the following fields: sched_priority Specifies the priority. sched_policy This field is ignored by the

threads library. Do not use.

Setting the Scheduling Attributes at Execution Time The pthread_getschedparam subroutine returns the schedpolicy and

schedparam attributes of a thread. These attributes can be set by calling the pthread_setschedparam subroutine. If the

target thread is currently running on a processor, the new scheduling policy and priority will be implemented the next

time the thread is scheduled. If the target thread is not running, it can be scheduled immediately at the end of the

subroutine call. For example, consider a thread T that is currently running with round-robin policy at the moment the

schedpolicy attribute of T is changed to FIFO. T will run until the end of its time slice, at which time its scheduling

attributes are then re-evaluated. If no threads have higher priority, T will be rescheduled, even before other threads

having the same priority. Consider a second example where a low-priority thread is not running. If this thread’s priority is

raised by another thread calling the pthread_setschedparam subroutine, the target thread will be scheduled immediately

if it is the highest priority runnable thread. Note: Both subroutines use a policy parameter and a sched_param structure.

Although this structure contains a sched_policy field, programs should not use it. The subroutines use the policy

parameter to pass the scheduling policy, and the subroutines then ignore the sched_policy field. Scheduling-Policy

Considerations Applications should use the default scheduling policy, unless a specific application requires the use of a

fixed-priority scheduling policy. Consider the following points about using the nondefault policies: • Using the round-

robin policy ensures that all threads having the same priority level will be scheduled equally, regardless of their activity.

This can be useful in programs where threads must read sensors or write actuators. • Using the FIFO policy should be

done with great care. A thread running with FIFO policy runs to completion, unless it is blocked by some calls, such as

performing input and output operations. Ahigh-priority FIFO thread may not be preempted and can affect the global

performance of the system. For example, threads doing intensive calculations, such as inverting a large matrix, should

never run with FIFO policy. The setting of scheduling policy and priority is also influenced by the contention scope of

threads. Using the FIFO or the round-robin policy may not always be allowed.

sched_yield Subroutine The sched_yield subroutine is the equivalent for threads of the yield subroutine. The sched_yield

subroutine forces the calling thread to relinquish the use of its processor and gives other threads an opportunity to be

scheduled. The next scheduled thread may belong to the same process as the calling thread or to another process. Do

not use the yield subroutine in a multi-threaded program. The interface pthread_yield subroutine is not available in Single

UNIX Specification, Version 2.

40 of 210 5/3/2023, 10:31 AM

5.7 Summary Threads are an inherit part of software products as a fundamental unit of CPU utilization as a basic building

block of multithreaded systems. The use of threads has evolved over the years from each program consisting of a single

thread as the path of execution of it. The notion of multithreading is the expansion of the original application thread to

multiple threads running in parallel handling multiple events and performing multiple tasks concurrently. Today’s modern

operating systems foster the ability of multiple threads controlled by a single process all within the same address space.

Multithreading brings a higher level of responsiveness to the user as a thread can run while other threads are on hold

awaiting instructions. As all threads are contained within a parent process, they share the resources and memory

allocated to the process working within the same address space making it less costly to generate multiple threads vs.

Processes. These benefits increase even further when executed on a multiprocessor architechture as multiple threads

can run in parallel across multiple processors as only one process may execute on one processor. Threads divide into

two types: user-level threads – visible to developers but unknown to the kernel, and kernel-level threads – managed by

the operating system’s kernel. Three models identify the relationships between user-level and kernel-level threads: one-

to-one, many- to-one, and many-to-many. This chapter explores various notions related to systems with multithreading

capability, including POSIX, Java, Windows 2000, Linux thread libraries. Challenges associated to multithreaded program

development explored in this report are those of thread cancellation, signal handling, thread-specific data, and semantics

of necessary system calls.

Self Assessment Questions 1. List two reasons why a context switch between threads may be faster than a context switch

between processes. 2. List three resources that are typically shared by all of the threads of a process. 3. What

Components of a

100% MATCHING BLOCK 88/301
InstructorsSolutions_ExcerciseQuestions.pdf

(D147754554)

program state are shared across threads in a multithreaded process? 4.

List

differences between user level threads and kernel level threads. 5. What

resources are used when a thread is created? 6.

73% MATCHING BLOCK 91/301
InstructorsSolutions_ExcerciseQuestions.pdf

(D147754554)

Can a multithreaded system using many user-level threads achieve better performance on a multi processor system

than on a single processor system?

Unit 6: Process Scheduling: Basic Concept

6.1

Objective

This chapter provides a general overview of CPU Scheduling, which is the basis for multiprogrammed operating system

and describes various concepts related to scheduling and different CPU scheduling algorithms.

6.2 Introduction Scheduling is the method by which threads, processes or data flows are given access to system

resources (e.g. processor time, communications bandwidth). This is usually done to load balance a system effectively or

achieve a target quality of service. The need for a scheduling algorithm arises from the requirement for most modern

systems to perform multitasking (execute more than one process at a time) and multiplexing (transmit multiple flows

simultaneously). The scheduler is concerned mainly with: •

95% MATCHING BLOCK 89/301

Throughput - number of processes that complete their execution per time unit. •

Latency, specifically: o Turnaround - total time between submission of a process and its completion. o

41 of 210 5/3/2023, 10:31 AM

100% MATCHING BLOCK 90/301

Response time - amount of time it takes from when a request was submitted until the first response is produced. •

100% MATCHING BLOCK 92/301 OS_Notes_Full.pdf (D108987417)

Response time - amount of time it takes from when a request was submitted until the first response is produced. •

Fairness / Waiting Time - Equal CPU time to each process (or more generally appropriate times according to each

process’ priority). In practice, these goals often conflict (e.g. throughput versus latency), thus a scheduler will implement

a suitable compromise. Preference is given to any one of the above mentioned concerns depending upon the user’s

needs and objectives.

6.3 Types of schedulers

Operating systems may feature up to 3 distinct types of schedulers, a long-term scheduler (high-level scheduler), a mid-

term or medium-term scheduler and a short-term scheduler. The names suggest the relative frequency with which these

functions are performed.

The

Scheduler is an operating system module that selects the next jobs to be admitted

into the system and the next process to run.

Long-term scheduling The long-term scheduler decides which jobs or processes are to be admitted to the ready queue (

in the Main Memory); that is,

when an attempt is made to execute a program, its admission to the set of currently executing processes is either

authorized or delayed by the long-term scheduler. Thus, this scheduler dictates what processes are to run on a system,

and the degree of concurrency to be supported at any one time - i.e., whether

a high or low amount

of processes are to be executed concurrently, and how the split between IO intensive and CPU intensive processes is to

be handled.

Medium-term scheduling

The medium-term scheduler temporarily removes processes from main memory and places them on secondary

memory (such as a disk drive) or vice versa. This is commonly referred to as “swapping out” or “swapping in” (

also incorrectly

as “paging out” or “paging in”). The medium-term scheduler may decide to swap out a process which has not been active

for some time, or a process which has a low priority, or a process which is page faulting frequently, or a process which is

taking up a large amount of memory in order to free up main memory for other processes, swapping the process back in

later when more memory is available, or when the process has been unblocked and is no longer waiting for a resource.

In many systems today,

the medium-term scheduler may actually perform the role of the long-term scheduler, by treating binaries as “swapped

out processes”

upon their execution.

In this way, when a segment of the binary is required it can be swapped in on demand.

Short-term

scheduling

The short-term scheduler (also known as the CPU scheduler) decides which of the ready, in-memory processes are to

be executed (allocated

a

42 of 210 5/3/2023, 10:31 AM

CPU) next following a clock interrupt, an IO interrupt, an operating system call or another form of signal. Thus the short-

term scheduler makes scheduling decisions much more frequently than the long-term or mid-term schedulers - a

scheduling decision willat a minimum have to be made after every time slice, and these are very short. This scheduler can

be preemptive, implying that it is capable of forcibly removing processes from a CPU when it decides to allocate that

CPU to another process, or non-preemptive (also known as “voluntary” or “co-operative”), in which case the scheduler is

unable to “force” processes off the CPU. In most cases short-term scheduler is written in assembler because it is a critical

part of the operating system.

6.4

CPU-I/O Burst Cycle A process will run for a while (the CPU burst), perform some I/O (the I/O burst), then run for a while

more (the next CPU burst). How long between I/O operations, depends on the process. I/O Bound processes are the

processes that perform lots of I/O operations. Each I/O operation is followed by a short CPU burst to process the I/O,

then more I/O happens. CPU bound processes are the processes that perform lots of computation and do little I/O. They

tend to have a few long CPU bursts.

Figure 6.1:

Process execution consists of a cycle of CPU execution and

I/O wait •

86% MATCHING BLOCK 93/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

The success of CPU scheduling depends on an observed property of processes: o Process execution consists of a

cycle of CPU execution and I/O wait. Processes alternate between these two states. o Process execution begins with a

CPU burst. That is followed by an I/O burst, which is followed by another CPU burst, then another I/O burst, and so on.

• Eventually, the final CPU burst ends with a system request to terminate execution (

86% MATCHING BLOCK 94/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245827)

The success of CPU scheduling depends on an observed property of processes: o Process execution consists of a

cycle of CPU execution and I/O wait. Processes alternate between these two states. o Process execution begins with a

CPU burst. That is followed by an I/O burst, which is followed by another CPU burst, then another I/O burst, and so on.

• Eventually, the final CPU burst ends with a system request to terminate execution (

see the

Fig).

The durations of CPU bursts have been measured extensively. They tend to have a frequency curve as in the figure 6.2.

Figure 6.2 :

Frequency Curve

The

85% MATCHING BLOCK 95/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

curve is generally characterized as exponential or hyperexponential, with a large number of short CPU bursts and a

small number of long CPU bursts. • An I/O-bound program typically has many short CPU bursts. • A CPU-bound

program might have a few long CPU bursts. This distribution can be important in the selection of an appropriate CPU-

scheduling algorithm.

43 of 210 5/3/2023, 10:31 AM

85% MATCHING BLOCK 96/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245827)

curve is generally characterized as exponential or hyperexponential, with a large number of short CPU bursts and a

small number of long CPU bursts. • An I/O-bound program typically has many short CPU bursts. • A CPU-bound

program might have a few long CPU bursts. This distribution can be important in the selection of an appropriate CPU-

scheduling algorithm.

Nearly all processes alternate bursts of computing with (disk) I/O requests, as shown in Figure 6.3.

Figure 6.3: I/O Bursts • Some processes, such as the one in Fig . (a), spend most of their time computing (CPU-bound),

while others, such as the one in Fig. (b), spend most of their time waiting for I/O (I/O-bound). • Having some CPU-bound

processes and some I/O-bound processes in memory together is a better idea than first loading and running all the

CPU-bound jobs and then when they are finished loading and running all the I/O-bound jobs (a careful mix of

processes).

Pre-emptive/Non

89% MATCHING BLOCK 100/301 OS_Notes_Full.pdf (D108987417)

Pre-emptive Scheduling CPU-scheduling decisions may take place under the following four circumstances: 1. When a

process switches from the running state to the waiting state (for example, as the result of an I/O request or an

invocation of wait for the termination of one of the child processes). 2. When a process switches from the running

state to the ready state (for example, when an interrupt occurs). 3. When a process switches from the waiting state to

the ready state (for example, at completion of I/O, on a

100% MATCHING BLOCK 97/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

CPU-scheduling decisions may take place under the following four circumstances: 1. When a process switches from

the running state to the waiting state (for example,

100% MATCHING BLOCK 98/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245827)

CPU-scheduling decisions may take place under the following four circumstances: 1. When a process switches from

the running state to the waiting state (for example,

91% MATCHING BLOCK 101/301 INF_1036.pdf (D164968063)

O request or an invocation of wait for the termination of one of the child processes). 2. When a process switches from

the running state to the ready state (for example, when an interrupt occurs). 3. When a process switches from the

waiting state to the ready state (for example, at completion of I/O, on a

94% MATCHING BLOCK 99/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

invocation of wait for the termination of one of the child processes). 2. When a process switches from the running

state to the ready state (for example, when an interrupt occurs). 3. When a process switches from the waiting state to

the ready state (for example, at completion of I/O, on a

semaphore, or for some other reason). 4. When a process terminates.

If no process is ready, a system-supplied idle process is normally run.

44 of 210 5/3/2023, 10:31 AM

96% MATCHING BLOCK 102/301 COOS.docx (D142533740)

For situations 1 and 4, there is no choice in terms of scheduling. Anew process (if one exists in the ready queue) must

be selected for execution. There is a choice, however, for situations 2 and 3. When scheduling takes place only under

circumstances 1 and 4, we say that the scheduling scheme is nonpreemptive or cooperative; otherwise, it is

pre-emptive. • Under

100% MATCHING BLOCK 103/301 INF_1036.pdf (D164968063)

non-preemptive scheduling, once the CPU has been allocated to a process, the process keeps the CPU until it releases

the CPU either by terminating or by switching to the waiting state. •

Unfortunately, pre-emptive

scheduling incurs a cost associated with access to shared data.

o

Consider the case of two processes that share data. o

While one is

updating the data, it is preempted so that the second process can run.

o

The second process then tries to read the data, which are in an inconsistent state.

o

In such situations, we need new mechanisms to coordinate access to shared data. •

A non-preemptive scheduling algorithm picks a process to run and then just lets it run until it blocks (

either on I/O or waiting for another process) or until it voluntarily releases the CPU. First-Come-First-Served (FCFS),

Shortest Job first (SJF). • In contrast, a pre-emptive

scheduling algorithm picks a process and lets it run for a maximum of some fixed time. If it is still running at the end of

the time interval, it is suspended and the scheduler picks another process to run.

Round-Robin (RR), Priority

Scheduling.

Dispatcher

Another component involved in the CPU-scheduling function is the

dispatcher.

The

dispatcher is the

module that gives control of

the CPU to the process

selected by the short-term scheduler.

This function involves

the

following: •

Switching context • Switching to user mode • Jumping to the proper location in the

user program to restart that program

The

dispatcher should be as fast as possible,

since it

is invoked during every

process

switch.

The

45 of 210 5/3/2023, 10:31 AM

time it takes

for the dispatcher to stop one

process and

start another

running

is known as

the dispatch latency.

6.5

Scheduling Criteria

Different CPU scheduling algorithms have different properties, and

the choice of a particular algorithm may favour one class of processes over another. In

selection of any

algorithm to use in a particular situation, we must consider following criterias of the various

algorithms. 1.

CPU utilization.

We want to keep

the CPU as busy as possible.

Conceptually,

92% MATCHING BLOCK 104/301 COOS.docx (D142533740)

CPU utilization can range from 0 to 100 percent. In a real system, it should range from 40 percent (for a lightly loaded

system) to 90 percent (for a heavily used system). 2. Throughput. If the CPU is busy executing processes, then work is

being done. One measure of work is the number of processes that are completed per time unit, called throughput. For

long processes, this rate may be one process per hour; for short transactions, it may be 10 processes per second. 3.

Turnaround time. The

interval from the time of submission of a process to the time of

completion is the

turnaround time. Turnaround

time (

Tr) = Ts + Tw where Ts :

Execution time. Tw : Waiting

34% MATCHING BLOCK 105/301 INF_1036.pdf (D164968063)

time. 4. Waiting time. The CPU scheduling algorithm does not affect the amount of time during which a process

executes or does I/O; it affects only the amount of time

that a process spends

100% MATCHING BLOCK 106/301 COOS.docx (D142533740)

waiting in the ready queue. 5. Response time. In an interactive system, turnaround time may not be the best criterion.

Often, a process can produce some output fairly early and can continue computing new results while previous results

are being output to the user. Thus, another measure is the time from the submission of a request until the first

response is produced.

46 of 210 5/3/2023, 10:31 AM

100% MATCHING BLOCK 107/301 COOS.docx (D142535190)

waiting in the ready queue. 5. Response time. In an interactive system, turnaround time may not be the best criterion.

Often, a process can produce some output fairly early and can continue computing new results while previous results

are being output to the user. Thus, another measure is the time from the submission of a request until the first

response is produced.

A typical scheduler is designed to select one or more primary performance criteria and rank them in order of importance.

One problem in

selecting a set of performance criteria is that they often conflict with each other. For example,

increased processor utilization is usually achieved by increasing the number of active processes, but then response time

decreases.

It is desirable

to maximize CPU utilization and throughput and to minimize turnaround time, waiting time, and response time.

In most cases, we optimize the average measure.

However,

under some

circumstances,

it is desirable

to optimize the minimum or maximum values rather than the average.

For example, to guarantee that all users get good service, we may want to minimize the maximum response time.

A scheduling algorithm that maximizes throughput may not necessarily minimize turnaround time. Given a mix of short

jobs and long jobs, a scheduler that always ran short jobs and never ran long jobs might achieve an excellent throughput

(many short jobs per hour) but at the expense of a terrible turnaround time for the long jobs. If short jobs kept arriving at

a steady rate, the long jobs might never run, making the mean turnaround time infinite while achieving a high

throughput.

6.6

Scheduling Algorithms

CPU scheduling

deals with the problem of deciding which of the processes in the ready queue is to be allocated the CPU.

There are

many

different

algorithms for scheduling

CPU. Following are some

of them:

6.6.1 First-Come, First-Served(FCFS)

Scheduling By far

the simplest CPU-scheduling algorithm is the first-come, first-served (FCFS) scheduling algorithm. With this

algorithm, processes are assigned the CPU in the order they request it. Basically, there is a single queue of ready

processes. Relative importance of jobs measured only by arrival time (poor choice).

The implementation of the FCFS policy is easily managed with a

81% MATCHING BLOCK 108/301 OS_SLM_Revised.pdf (D155071872)

FIFO queue. When a process enters the ready queue, its PCB is linked onto the tail of the queue.

47 of 210 5/3/2023, 10:31 AM

80% MATCHING BLOCK 109/301 INF_1036.pdf (D164968063)

process enters the ready queue, its PCB is linked onto the tail of the queue.

The

average waiting time under the FCFS policy, however, is often

quite

long.

Consider

the following set of processes that

arrive at time 0,

with the length of the CPU burst given in milliseconds:

Process Burst Time(

ms) Waiting Time(ms) Turnaround

Time(ms)

P1 24 0 24 P2 3 24 27 P3 3 27 30 Average - 17 27

Table 6.1

If the processes arrive

in the order P1,P2,P3

and are served in FCFS order, we get

the result

as

The average waiting time is (0 + 24 + 27) / 3 = 17

milliseconds.

If

the

processes arrive in the order P2, P3, P1, the results will be

78% MATCHING BLOCK 110/301 OS_SLM_Revised.pdf (D155071872)

Waiting time for P2 = 0ms Waiting time for P3 = 3ms Waiting time for P1 = 6

ms

So

the average waiting time

is

now (6 + 0 + 3) / 3 = 3

milliseconds. This

reduction is substantial.

Thus, the average waiting time under an FCFS policy is generally not minimal and may vary substantially if the

process’

s CPU burst times vary greatly.

Assume we have one CPU-bound process and many I/O-bound processes. As the

processes flow around the system (

dynamic

system), the following scenario may result. •

The CPU-bound process will get

and hold

the CPU.

During this time, all the other processes will finish their I/0 and

48 of 210 5/3/2023, 10:31 AM

will

move into the ready queue, waiting for

the CPU. • While the processes wait in the ready queue, the I/O devices are idle. Eventually, the CPU-bound

process finishes its CPU burst and moves to an I/0 device. •

All the I/O-bound processes, which have short CPU bursts, execute quickly and move back to the

I/O

queues. •

At this point, the CPU sits idle.

The CPU-bound process will then move back to the ready queue and be allocated the CPU. •

Again, all the

I/O

processes end up waiting in the ready queue until the CPU-bound process is done. •

There is a convoy effect as all the

other processes wait for the one big process to get off the CPU.

A long CPU-bound job may take the CPU and may force shorter (or I/O-bound) jobs to wait prolonged periods.

This effect results in lower CPU and device utilization than might be possible if the shorter processes were allowed to go

first.

Another Example: Suppose that there is one CPU-bound process that runs for 1 sec at a time and many I/ O-bound

processes that use little CPU time but each have to perform 1000 disk reads to complete. • The CPU-bound process runs

for 1 sec, then it reads a disk block. • All the I/O processes now run and start disk reads. • When the CPU-bound process

gets its disk block, it runs for another 1 sec, followed by all the I/ O-bound processes in quick succession. • The net result

is that each I/O-bound process gets to read 1 block per second and will take 1000 sec to finish. • With a scheduling

algorithm that preempted the CPU-bound process every 10 msec, the I/O- bound processes would finish in 10 sec

instead of 1000 sec, and without slowing down the CPU- bound process very much.

The

FCFS scheduling algorithm

is nonpreemptive.

Once the CPU has been allocated to

a process, that process keeps the CPU until it

releases the CPU, either by

terminating or

by

requesting

I/0.

6.6.2

Shortest-Job-First Scheduling •

A different approach to CPU scheduling is the

shortest-job-first (SJF)

scheduling algorithm.

This algorithm associates with each process the length of

the process’

s next CPU burst. •

When

the

CPU is available, it is assigned to the process that has

the smallest next CPU burst.

If

the next CPU

bursts of two processes are the

49 of 210 5/3/2023, 10:31 AM

89% MATCHING BLOCK 111/301 COOS.docx (D142533740)

same, FCFS scheduling is used. As an example of SJF scheduling, consider the following set of processes, with the

length of the CPU burst

Process Burst Time(

ms) Waiting Time(ms) Turnaround

Time(ms) P1 6 3 9 P2 8 16 24 P3 7 9 16 P4 3 0 3

Average - 7 13

Table 6.2

Using SJF scheduling, we would schedule these processes according to the following

Figure:

By comparison,

if we were using the FCFS scheduling scheme, the average waiting time would be 10.25

milliseconds.

The SJF

scheduling algorithm

100% MATCHING BLOCK 112/301 Operating System.pdf (D30089487)

gives the minimum average waiting time for a given set of processes. • Moving a short process before

a

97% MATCHING BLOCK 113/301 Operating System.pdf (D30089487)

long one decreases the waiting time of the short process more than it increases the waiting time of the long process. •

Consequently, the average waiting time decreases. The real difficulty with the SJF algorithm is knowing the length of

the next CPU request. For long-term (job) scheduling in a batch system, we can use as the length the process time

limit that a user specifies when he submits the job.

100% MATCHING BLOCK 115/301 Operating System.pdf (D30089487)

We may not know the length of the next CPU burst, but we may be able to predict its value. We expect that the next

CPU burst will be similar in length to the previous ones.

Also, long running jobs may starve for the CPU when there is a steady supply of short jobs. Example of Non-

100% MATCHING BLOCK 114/301

Preemptive SJF Process Arrival Time Burst Time P1 0.0 7 P2 2.0 4 P3 4.0 1

P4 5.0 4 Table 6.3

Waiting

76% MATCHING BLOCK 116/301 OS_SLM_Revised.pdf (D155071872)

time for P1 = 0ms Waiting time for P2 = (8 – 2)= 6ms Waiting time for P3 = (7 - 4)= 3ms Waiting time for P4 = (12 -

5)= 7ms

50 of 210 5/3/2023, 10:31 AM

So average waiting time

of above scenario is (0 + 6 + 3 + 7) / 4 = 4 For FCFS scheduling scheme the Average waiting time

is (0 + 5 + 7 + 7)/4 = 4.75 Example of

Preemptive SJF

Process

Arrival Time Burst Time

53% MATCHING BLOCK 117/301 OS_SLM_Revised.pdf (D155071872)

P1 0.0 7 P2 2.0 4 P3 4.0 1 P4 5.0 4 Table 6.4 Waiting time for P1 = (11 – 2)= 9ms Waiting time for P2 = (5 - 4)= 6ms

Waiting time for P3 = 0ms Waiting time for P4 = (7 - 5)= 2ms Average waiting time

of above scenario is (9 + 1 + 0 + 2) / 4 = 3 In the case of

87% MATCHING BLOCK 118/301 OS_SLM_Revised.pdf (D155071872)

preemptive SJF which is also known as Shortest-Remaining-Time-First (SRTF),

there is less average waiting time, because a long job is pre-empted whenever small job arrives in the system. After two

minutes when Job P2 arrives, resources are pre-empted by process P1 .In similar manner all the longer processes are

pre-empted to execute shorter jobs first.

6.6.3

Round-Robin Scheduling The

round-robin (RR) scheduling algorithm is

designed especially for

time-sharing

systems.

It

is similar to FCFS

scheduling, but

pre-emption

is added

to switch between processes.

A

small unit of time, called a time quantum or

time slice,

is defined.

A time quantum is generally from 10 to 100 milliseconds.

The ready queue is treated as a circular queue.

To implement RR

scheduling, • We keep

the ready queue as a FIFO queue

of

processes. •

New processes are added to the tail of the ready

queue. •

The CPU scheduler picks the first process from the ready queue,

sets

a timer to interrupt after 1time quantum, and dispatches the process. •

The

process may have a CPU burst of less than 1 time quantum.

51 of 210 5/3/2023, 10:31 AM

o

In this case, the process

itself will release the CPU voluntarily.

o The scheduler will then proceed

to the

85% MATCHING BLOCK 119/301 Operating System.pdf (D30089487)

next process in the ready queue. • Otherwise, if the CPU burst of the currently running process is longer than 1 time

quantum,

o

93% MATCHING BLOCK 120/301 COOS.docx (D142533740)

the timer will go off and will cause an interrupt to the OS. o A context switch will be executed, and the process will be

put at the tail of the ready queue. The CPU scheduler will then select the next process in the ready queue.

Figure 6.4 : Round-robin scheduling. (a) The list of runnable processes. (b) The list of runnable processes after B uses up

its

quantum.

95% MATCHING BLOCK 121/301 COOS.docx (D142533740)

The average waiting time under the RR policy is often long. Consider the following set of processes that arrive at time

0, with the length of the CPU burst given in milliseconds: (a time

quantum of 4 milliseconds)

Process

Burst Time Waiting Time Turnaround Time

2 4 6 30

3 4 7

3 7 10 Average - 5.66 15 .6 6

Table 6.5 Using round-robin

scheduling, we would schedule these processes according to the following

figure:

P1 P2

P3 P1 P1

P1 P1 0 4 7 10 16 22 26 31

In the RR scheduling algorithm, no process is allocated the CPU for more than 1 time quantum in a row (unless it is the

only runnable process).

If a process’s CPU burst exceeds 1 time quantum, that process is preempted and is put back in the ready queue.

The RR scheduling algorithm is thus

pre-emptive. •

If there are n processes in

the ready queue and the time quantum is q, then

each process gets 1/

n

of the CPU time in chunks of at most q time units. •

Each process

must wait

52 of 210 5/3/2023, 10:31 AM

no longer than (n – 1) * q time units until its next time quantum. •

For example, with five processes and a time quantum of 20 milliseconds, each process will get up to 20 milliseconds

every 100 milliseconds.

The performance of the RR algorithm depends heavily on

the size of the time quantum. •

If the time quantum is extremely large, the RR policy is the same as the FCFS policy. • If the time quantum is extremely

small (say, 1 millisecond), the RR approach

is called processor sharing

and (in theory) creates the appearance that each of n processes has its own processor running at 1 / n speed of the real

processor.

We

need also to consider the effect of context switching on

86% MATCHING BLOCK 123/301 Operating System.pdf (D30089487)

the performance of RR scheduling. Switching from one process to another requires a certain amount of time for doing

the administration’ saving and loading registers and memory maps, updating various tables and lists,

flushing and reloading the memory cache, etc. • Let us assume

that we have

only one process of 10 time units. • If

the quantum is 12 time units, the process finishes in less than 1 time quantum, with no overhead. •

If

the quantum is 6 time units, however, the process requires 2 quanta, resulting in a context switch. •

If the time quantum is 1 time unit, then nine context switches will occur, slowing the execution of the process

accordingly

o Thus,

we want

the time quantum to be large with respect to the

context-switch time. • If the context-switch time is approximately 10 percent of the time quantum, then about 10

percent of the CPU time will be spent in context

switching. •

In practice, most modern systems have time quanta ranging from 10 to 100 milliseconds. •

The time required for a context switch is typically less than 10 microseconds; thus, the context- switch time is a small

fraction of the time quantum.

o

Setting the quantum too short causes too many process switches and lowers the CPU efficiency, but setting it too long

may cause poor response to short interactive requests.

o

Poor average waiting time when job lengths are identical; Imagine 10 jobs each requiring 10 time slices, all complete

after about 100 time slices, even FCFS is better!

o

In general, the average turnaround time can be improved if most processes finish their next CPU burst in a single

time quantum.

If context-switch time is added in, the average turnaround time increases for a smaller time quantum, since more

context switches are re quired. Although the time quantum

should be large compared with the context-switch time, it should not be too large.

If the time quantum is too large, RR scheduling degenerates to FCFS

policy.

53 of 210 5/3/2023, 10:31 AM

Scheduling algorithm CPU Overhead Throughput Turnaround time Response time First In First Out Low Low High Low

Shortest Job First Medium High Medium Medium Priority based scheduling Medium Low High High Round-robin

scheduling High Medium Medium High Table 6.6

6.7

Operating System Examples 6.7.1 Linux Scheduling •

The Linux scheduler is a pre-emptive, priority-based algorithm with two separate priority ranges: o a real-time range

from 0 to 99

o

and a nice value ranging from 100 to 140. • These two ranges map into a global priority scheme whereby numerically

lower values indicate higher priorities. •

Linux assigns higher-priority tasks longer time quanta and lower-priority tasks shorter time quanta.

A

runnable task is considered eligible for execution on the CPU as long as it has time remaining in its

time

slice. When a task has exhausted its time slice, it is considered expired and is not eligible for execution again until all other

tasks have also exhausted their time quanta. •

The kernel maintains a list of all runnable tasks in a

run queue

data structure.

Because of its support for SMP, each processor maintains its own

run queue and schedules itself independently. • Each

run queue

contains two priority arrays -active and expired. o

The active array contains all tasks with time remaining in their time slices, and the expired array contains all expired tasks.

o

The scheduler chooses the task with the highest priority from the active array for execution on the CPU.

On multiprocessor machines, this means that each processor is scheduling the highest-priority task from its own

run queue

structure. o

When all tasks have exhausted their time slices (that is, the active array is empty), the two priority arrays are exchanged;

the expired array becomes the active array, and vice versa.

6.7.2

Windows 2000 Scheduling • Windows 2000 is designed as responsive to the need of a user • A preemptive scheduler is

implemented • Scheduler has flexible priority levels that include RR scheduling within each level • Some levels also have

dynamic priority variation based on current thread activity Process and Thread Priorities • Priorities are organized in two

bands or classes: real time and variable • Each band has 16 levels • Threads requiring immediate attention are in real time

class • Overall W2K uses a priority driven preemptive scheduler so real time threads have preference over other threads

Priorities in two classes are handled differently • All real time class threads have fixed priority that never changes (RR

queue is used) • In the variable class a threads priority begins with some initial value which may then change up/down

during threads life time • There is a FIFO queue at each priority level, but a process may migrate to one of the other

queues within the variable priority class • No process can be promoted to the upper class • Initial priority of a thread in

variable class is determined by:

Process Based Priority: Can have any value between 0 - 15 Thread Based Priority: This could be equal or within two levels

above or below that of the process. For example if a process has a base priority 4, one of its thread has -1, then initial

priority of that thread is 3

Multi-processor Scheduling For a single processor • Highest priority thread is always active unless it is blocked for some

reason • If more that one thread has the same priority, processor is shared based on RR For Multi-processor • A system

with N processor, (N - 1) highest priority threads are always active, running exclusively on (N - 1) processors. • The

remaining lower priority threads run on the single remaining processor

54 of 210 5/3/2023, 10:31 AM

Very early MS-DOS and Microsoft Windows systems were non-multitasking, and as such did not feature a scheduler.

Windows 3.1x used a non-preemptive scheduler, meaning that it did not interrupt programs. It relied on the program to

end or tell the OS that it didn’t need the processor so that it could move on to another process. This is usually called

cooperative multitasking. Windows 95 introduced a rudimentary preemptive scheduler; however, for legacy support

opted to let 16 bit applications run without preemption. Windows NT-based operating systems use a multilevel feedback

queue. 32 priority levels are defined, 0 through to 31, with priorities 0 through 15 being “normal” priorities and priorities

16 through 31 being soft real-time priorities, requiring privileges to assign. 0 is reserved for the Operating System. Users

can select 5 of these priorities to assign to a running application from the Task Manager application, or through thread

management APIs. The kernel may change the priority level of a thread depending on its I/O and CPU usage and

whether it is interactive (i.e. accepts and responds to input from humans), raising the priority of interactive and I/O

bounded processes and lowering that of CPU bound processes, to increase the responsiveness of interactive

applications. The scheduler was modified in Windows Vista to use the cycle counter register of modern processors to

keep track of exactly how many CPU cycles a thread has executed, rather than just using an interval-timer interrupt

routine. Vista also uses a priority scheduler for the I/O queue so that disk defragmenters and other such programs don’t

interfere with foreground operations.

6.8 Summary What is CPU scheduling? Determining which processes run when there are multiple runnable processes.

Why is it important? Because it can can have a big effect on resource utilization and the overall performance of the

system. CPU/IO burst cycle. A process will run for a while (the CPU burst), perform some IO (the IO burst), then run for a

while more (the next CPU burst). How long between IO operations? Depends on the process. • IO Bound processes:

processes that perform lots of IO operations. Each IO operation is followed by a short CPU burst to process the IO, then

more IO happens. • CPU bound processes: processes that perform lots of computation and do little IO. Tend to have a

few long CPU bursts. Preemptive vs. Non-preemptive SJF scheduler. Preemptive scheduler reruns scheduling decision

when process becomes ready. If the new process has priority over running process, the CPU preempts the running

process and executes the new process. Non-preemptive scheduler only does scheduling decision when running process

voluntarily gives up CPU. In effect, it allows every running process to finish its CPU burst. Long term scheduler is given a

set of processes and decides which ones should start to run. Once they start running, they may suspend because of IO

or because of preemption. Short term scheduler decides which of the available jobs that long term scheduler has

decided are runnable to actually run. Basic assumptions behind most scheduling algorithms: • There is a pool of runnable

processes contending for the CPU. • The processes are independent and compete for resources. • The job of the

scheduler is to distribute the scarce resource of the CPU to the different processes “fairly” (according to some definition

of fairness) and in a way that optimizes some performance criteria. First-Come, First-Served. One ready queue, OS runs

the process at head of queue, new processes come in at the end of the queue. A process does not give up CPU until it

either terminates or performs IO. Shortest-Job-First (SJF) can eliminate some of the variance in Waiting and Turnaround

time. In fact, it is optimal with respect to average waiting time. Big problem: how does scheduler figure out how long will

it take the process to run? Implementing round-robin requires timer interrupts. When schedule a process, set the timer

to go off after the time quantum amount of time expires. If process does IO before timer goes off, no problem - just run

next process. But if process expires its quantum, do a context switch. Save the state of the running process and run the

next process.

Self Assessment Questions 1. Difference between Turnaround time and response time. Given following information.

Process no. Arrival time CPU Burst 1 0 10 2 1 2 3 2 3 4 3 1 5 4 5 a. Compute waiting & turnaround time for FCFS and SJF

scheduling algorithms. b.

100% MATCHING BLOCK 122/301

Which of the schedules in part (a) results in the minimal average waiting time (over all processes) 3.

Rank the following scheduling algorithms on a scale of 1 to 4 (1 being the highest) in terms of the extent to which they

facilitate low average waiting time: • First-Come-First-Served • Shortest Job First (Non-Preemptive) • Priority

(Preemptive) • Round-Robin 4.

Explain the differences in the degree to which the following scheduling algorithms discriminate in favour of short

processes: •

55 of 210 5/3/2023, 10:31 AM

First-Come-First-Serve • Round-Robin 5. Explain various scheduling

criterias. Why we need scheduling Algorithms. Explain in brief all the scheduling algorithms. 6. What are CPU Bound And

I/O bound Jobs. 7. What do you understand by CPU-I/O burst? 8. Differentiate between preemptive and nonpreemptive

scheduling

Unit 7: Process Synchronization

7.1

Objective

After studying

this unit,

you will be able to understand the concept of

synchronizing different process running within a computer. You will learn about race condition and need to

synchronization, critical section issues. You will also learn about simaphores and monitors.

7.2 Meaning of Synchronization In operating system, synchronization refers to one of two distinct but related concepts:

synchronization of processes, and synchronization of data.

Process synchronization refers to the idea that multiple processes are to join up or handshake at a certain point,

so as

to reach an agreement or commit to a certain sequence of action.

Data synchronization refers to the idea of keeping multiple copies of a dataset in coherence with one another, or to

maintain data integrity. Process synchronization primitives are commonly used to implement data synchronization.

Process Synchronization Problem Resource sharing is not the only area of concern in multiprogramming systems.

Synchronization is an important problem in Inter-Process Communication. Consider the following example, in which

two processes, running concurrently, are sharing a bounded buffer. One process is producing items to place in the

buffer, while another process is consuming the items in the buffer. buffer[10] // buffer of size 10 Producer process- while

(true) // loop forever produce (item) // create a new item enter_item (item) // place item in buffer Consumer process-

while (true) // loop forever remove_item (item) // remove an item from the buffer

Here, the producer process must not be allowed to place an item in the buffer unless an empty slot in the buffer exists.

Conversely, the consumer must not be allowed to remove an item from the buffer unless an item exists. This example

illustrates the need for synchronization between processes. This means that a certain sequence of events must not be

allowed to happen. Synchronization is different from mutual exclusion, in that synchronization would not prevent the

producer and consumer from accessing the buffer at the same time.

7.3 Need of Synchronization In computing, a

process is an instance of a computer program that is being executed.

It contains the program code and its current activity. Depending on the operating system (OS), a process may be made

up of multiple threads of execution that execute instructions concurrently.

7.3.1 Thread and process synchronization Thread synchronization or serialization, strictly defined,

is the application of particular mechanisms to ensure that two concurrently-executing threads or processes do not

execute specific portions of a program at the same time. If one thread has begun to execute a serialized portion of the

program, any other thread trying to execute this portion must wait until the first thread finishes.

Synchronization is used to control access to state both in small scale multiprocessing systems in multithreaded

environments and multiprocessor computers and in distributed computers consisting of thousands of units in banking

and database systems, in web servers, and so on. A thread of execution is the smallest unit of processing that can be

scheduled by an operating system.

The implementation of threads and processes differs from one operating system to another, but in most cases, a thread

is

contained inside a process. Multiple threads can exist within the same process and share resources such as memory,

while different processes do not share these resources.

Figure 7.1: A process with two threads of execution on a single processor.

On a single processor, multithreading generally occurs by time-division multiplexing (as in multitasking): the processor

switches between different threads. This context switching generally happens frequently enough that the user perceives

the threads or tasks as running at the same time. On a multiprocessor (including multi-core system), the threads or tasks

will actually run at the same time, with each processor or core running a particular thread

56 of 210 5/3/2023, 10:31 AM

or task. Many modern operating systems directly support both time-sliced and multiprocessor threading with a process

scheduler. The

kernel of an

operating system allows programmers to manipulate threads via the system call interface.

Some implementations are called a kernel thread, whereas a lightweight process (LWP) is a specific type of kernel thread

that shares the same state and information.

7.3.2 Data Synchronization Data synchronization is the process of establishing consistency among data from a source to

a target data storage and vice versa and the continuous harmonization of the data over time.

7.3.3 File-Based Solutions There are tools available for file synchronization, version control (CVS, Subversion, etc.),

distributed file systems (Coda, etc.), and mirroring, in that these entire attempt to keep sets of files synchronized.

However, only version control and file synchronization tools can deal with modifications to more than one copy of the

files. File synchronization is commonly used for home backups on external hard drives or updating for transport on USB

flash drives. The automatic process prevents copying already identical files and thus can save considerable time from a

manual copy, also being faster and less error prone. Version control tools are intended to deal with situations where

more than one person wants to simultaneously modify the same file, while file synchronizers are optimized for situations

where only one copy of the file will be edited at a time. For this reason, although version control tools can be used for file

synchronization, dedicated programs require less overhead. Distributed file systems may also be seen as ensuring

multiple versions of a file are synchronized. This normally requires that the devices storing the files are always connected,

but some distributed file systems like Coda allow disconnected operation followed by reconciliation. The merging

facilities of a distributed file system are typically more limited than those of a version control system because most file

systems do not keep a version graph.

Mirroring: A mirror is an exact copy of a data set. On the Internet, a mirror site is an exact copy of another Internet site.

Mirror sites are most commonly used to provide multiple sources of the same information and are of particular value as a

way of providing reliable access to large downloads. Synchronization can also be useful in encryption for synchronizing

Public Key Servers.

7.4 Race Condition When two processes sharing a common variable try to update it simultaneously, one cannot predict

the output of it, this is the race condition. A thread while updating the variable can be preempted by another thread and

update it differently This is why synchronization mechanisms are used. When different computational results (e.g.,

output, values of variables) occur depending. On the particular timing and resulting order of execution of statements

across separate Threads or processes Example: X=5 Process 1: X=X+1 Process 2: X=X+2 Machine code is LOAD

EAX,MEMORY_X ADD EAX , 1 MOV MEMORY_X,EAX

While process1 is executing second line it could be preempted. And process2 takes turn so, MEMORY_X contains value 7.

Now Process1 comes back and starts the remaining lines of code. The memory then contains value 6. Which is the final

answer But we should have got a value of 8 instead.

7.4.1 Race Condition Properties There are three properties that are necessary for a race condition to exist: 1. Concurrency

Property. There must be at least two control flows executing concurrently. 2. Shared Object Property. A shared race

object must be accessed by both of the concurrent flows. 3. Change State Property. At least one of the control flows

must alter the state of the race object. Solution strategy 1. Need to ensure that only one process or thread accesses a

variable or I/O device until it has completed its required sequence of operations. 2. In general, a thread needs to perform

some sequence of operations on I/O device or data Structure to leave it in a consistent state, before the next thread can

access the I/O Device or data structure.

7.5 Critical-Section Problem The producer-consumer problem is a specific example of a more general situation known as

the critical section problem. The general idea is that in a number of cooperating processes, each has a critical section of

code, with the following conditions and terminologies: o Only one process in the group can be allowed to execute in

their critical section at any one time. If one process is already executing their critical section and another process wishes

to do so, then the second process must be made to wait until the first process has completed their critical section work.

o The code preceding the critical section, and which controls access to the critical section, is termed the entry section. It

acts like a carefully controlled locking door. o The code following the critical section is termed the exit section. It

generally releases the lock on someone else’s door, or at least lets the world know that they are no longer in their critical

section.

57 of 210 5/3/2023, 10:31 AM

The rest of the code not included in either the critical section or the entry or exit sections is termed the remainder

section. Figure 7.2: General structure of a typical process Pi

73% MATCHING BLOCK 124/301 COOS.docx (D142533740)

A solution to the critical section problem must satisfy the following three conditions: 1. Mutual Exclusion - Only one

process at a time

73% MATCHING BLOCK 125/301 COOS.docx (D142535190)

A solution to the critical section problem must satisfy the following three conditions: 1. Mutual Exclusion - Only one

process at a time

100% MATCHING BLOCK 128/301 OS_SLM_Revised.pdf (D155071872)

solution to the critical section problem must satisfy the following three conditions: 1. Mutual Exclusion - Only one

process at a time can be executing in their critical section. 2. Progress –

40% MATCHING BLOCK 126/301

can be executing in their critical section. 2. Progress – If no process is currently executing in their critical section, and

one or more processes want to execute their critical section, then only the processes

not in their remainder sections can participate in the decision, and the decision cannot be postponed indefinitely. (

i.e. processes cannot be blocked forever waiting to get into their critical sections.) 3. Bounded Waiting - There exists a

limit as to how many

other processes can get into

58% MATCHING BLOCK 127/301

their critical sections after a process requests entry into their critical section and before that request is granted. (

i.e. a process requesting entry into their critical section will get a turn eventually, and there is a limit as to how many

other processes get to go first.) We assume that all processes proceed at a non-zero speed, but no assumptions can be

made regarding the relative speed of one process versus another. Kernel processes can also be subject to race

conditions, which can be especially problematic when updating commonly shared kernel data structures such as open

file tables or virtual memory management. Accordingly, kernels can take on one of two forms:

a.

Non-preemptive kernels do not allow processes to be interrupted while in kernel mode. This eliminates the possibility of

kernel-mode race conditions, but requires kernel mode operations to complete very quickly, and can be problematic for

real-time systems, because timing cannot be guaranteed. b. Preemptive kernels allow for real-time operations but must

be carefully written to avoid race conditions. This can be especially tricky on SMP systems, in which multiple kernel

processes may be running simultaneously on different processors. Non-preemptive kernels include Windows XP, 2000,

traditional UNIX, and Linux prior to 2.6. Preemptive kernels include Linux 2.6 and later, and some commercial UNIXes

such as Solaris and IRIX.

7.6 Synchronization Hardware

In this section, we present

some simple hardware instructions that are available on many Systems and show how they can be used effectively in

solving the

58 of 210 5/3/2023, 10:31 AM

critical-section

problem.

79% MATCHING BLOCK 129/301 COOS.docx (D142533740)

The Critical-section problem could be solved simply in a uniprocessor environment if we could disallow interrupts

to occur while a shared variable

is

96% MATCHING BLOCK 130/301 COOS.docx (D142533740)

being modified. In this manner, we could be sure that the current sequence of instructions would be allowed to

execute in order without preemption. No other instructions would be run, so no unexpected modifications could be

made to the shared variable. Unfortunately, this solution is not feasible in a multiprocessor environment.

96% MATCHING BLOCK 131/301 COOS.docx (D142535190)

being modified. In this manner, we could be sure that the current sequence of instructions would be allowed to

execute in order without preemption. No other instructions would be run, so no unexpected modifications could be

made to the shared variable. Unfortunately, this solution is not feasible in a multiprocessor environment.

Disabling interrupts on a multiprocessor can be time-consuming, as the

message is passed to all

the processors.

This message passing delays entry

into each

critical section, and system efficiency decreases.

Also, consider the effect on a system’s clock, if the clock is kept updated by interrupts. Many machines

therefore

provide special hardware instructions that allow us either to test and modify the content of a word,

or to swap the contents of two words, atomically.

We can use these special instructions to solve the critical section problem in a relatively simple manner.

Rather than discussing one specific instruction for one specific machine, let us abstract the main concepts behind these

types of instructions.

The Test-and-Set instruction

can executed atomically—that is, as one uninterruptible unit. Thus, if two Test-and-Set

instructions are executed simultaneously (each on a different CPU), they will be executed sequentially in some arbitrary

order.

If the machine supports the Test-and-Set instruction, then we can implement mutual exclusion by declaring a Boolean

variable lock, initialized to false.

100% MATCHING BLOCK 132/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

The structure of process Pi, is shown in Figure. The

100% MATCHING BLOCK 133/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245827)

The structure of process Pi, is shown in Figure. The

59 of 210 5/3/2023, 10:31 AM

Swap instruction,

defined as as shown in Figure operates on the contents of two words like the Test- and-Set

instruction it is executed atomically. If the machine supports the Swap instruction, then mutual exclusion can be

provided as follows.

A global Boolean variable lock is declared and is initialized to

false.

Function Test and Set (var target:boolean):boolean Begin Test-and-Set:=

target; Target:=true; End;

Repeat While Test-and-Set (lock) do no-op; Critical section Lock: =false; Reminder section Until false; Figure 7.3:

the definition of the Test-and-Set instruction.

Figure 7.4: Mutual-exclusion implementation with Test-and-Set.

•

In addition, each process also has a local Boolean variable key.

The structure of process PJ is shown in Figure. These algorithms do not satisfy the bounded-wait in requirement. We

present

an algorithm

that uses the Test-and-Set instruction in Figure.

Procedure Swap(var a,b:boolean); var temp:boolean: Begin temp:=a; a:=b; b:=temp; End;

This algorithm satisfies all the critical-section requirements.

Figure 7.5: The definition of the Swap instruction

Swep (lock , key); Until key:= false; Critical section Lock: =false Reminder section Until false; Repeat Key:= true; Repeat

Figure 7.6: Mutual-exclusion implementation with the Swap instruction.

Repeat Waiting[i]=true; Key=true; While=waiting[i]and key do key:=Test-and-Set(lock); Waiting[i]=false; Critical section

J:=i+1 mod n; While (j=i) and(not waiting[j])do j:=j+1 mod n; if j=i then lock:=false else waiting[j]:=false; reminder section

until false;

Figure 7.7: Bounded-waiting mutual exclusion with Test-and-Set.

7.7 Introduction to Semaphore & Monitor Sometimes a process may need to wait for some other process to finish before

it can continue. In this instance, the two processes need to be synchronized together. There are a number of ways in

which this can be done. A common method in operating systems is to use a variable called a semaphore that only one

process can own at a time. There are two calls associated with a semaphore, one to lock it and one to unlock it. When a

process attempts to lock a semaphore, it will be successful if the semaphore is free. If the semaphore is already locked,

the process requesting the lock will be blocked and remain blocked till the process that has the semaphore unlocks it.

When that happens, the process that was blocked will be unblocked and the semaphore can then be locked by it.

System semaphores are used by the operating system to control system resources. A program can be assigned a

resource by getting a semaphore (via a system call to the operating system). When the resource is no longer needed, the

semaphore is returned to the operating system, which can then allocate it to another program. A semaphore is hardware

or a software tag variable whose value indicates the status of a common resource. Its purpose is to lock the resource

being used. A process which needs the resource will check the semaphore for determining the status of the resource

followed by the decision for proceeding. In multitasking operating systems, the activities are synchronized by using the

semaphore techniques. Types of semaphore: A semaphore is a variable.

90% MATCHING BLOCK 134/301 INF_1036.pdf (D164968063)

There are 2 types of semaphores: Binary semaphores Counting semaphores Binary semaphores

have two methods associated with it. (up, down / lock, unlock) Binary semaphores can take only 2 values (0/1). They are

used to acquire locks. When a resource is available, the process in charge set the semaphore to 1 else 0. Counting

Semaphore may have value to be greater than one, typically used to allocate resources from a pool of identical

resources.

A semaphore is a protected variable whose value can be accessed and altered only by the operations P

60 of 210 5/3/2023, 10:31 AM

and V and initialization operation called ‘Semaphore initislize’. Binary Semaphores can assume only the value 0 or the

value 1 counting semaphores also called general semaphores can assume only nonnegative values. The P (or wait or

sleep or down) operation on semaphores S, written as P(S) or wait (S), operates as follows: P(S): IF S < 0 THEN S := S - 1

ELSE (wait on S) The V (or signal or wakeup or up) operation on semaphore S, written as V(S) or signal (S), operates as

follows: V(S): IF (one or more process

are waiting on S) THEN (let one of these processes proceed)

ELSE S := S +1 Operations P and V are done as single, indivisible, atomic action. It is guaranteed that

88% MATCHING BLOCK 135/301 INF_1036.pdf (D164968063)

once a semaphore operation has stared, no other process can access the semaphore until operation has completed.

Mutual exclusion on the semaphore, S, is enforced within P(S) and V(S). If several processes attempt a P(S)

simultaneously, only process will be allowed to proceed. The other processes will be kept waiting, but the

implementation of P and V guarantees that processes will not suffer indefinite postponement. Semaphores solve the

lost-wakeup problem

7.7.1 Producer-Consumer Problem Using Semaphores The Solution to producer-consumer problem uses three

semaphores, namely, full, empty and mutex.

The semaphore ‘full’ is used for counting the number of slots in the buffer

that are full.

The ‘empty’ for counting the number of slots that are empty and

semaphore ‘mutex’

100% MATCHING BLOCK 137/301 INF_1036.pdf (D164968063)

to make sure that the producer and consumer do not access

modifiable shared section of the buffer simultaneously.

Initialization * Set full buffer slots to 0. i.e., semaphore Full = 0. * Set empty buffer slots to N. i.e., semaphore empty = N. *

For control access to critical section set mutex to 1. i.e., semaphore mutex = 1. Producer () WHILE (true) produce-Item (

); P (empty); P (mutex); enter-Item () V (mutex) V (full); Consumer () WHILE (true) P (full) P (mutex); remove-Item (); V

(mutex); V (empty); consume-Item (Item)

7.7.2 What is a Monitor? A monitor is a set of multiple routines which are protected by a mutual exclusion lock. None of

the routines in the monitor can be executed by a thread until that thread acquires the lock. This means that only ONE

thread can execute within the monitor at a time. Any other threads must wait for the thread that’s currently executing to

give up control of the lock. However, a thread can actually suspend itself inside a monitor and then wait for an event to

occur. If this happens, then another thread is given the opportunity to enter the monitor. The thread that was suspended

will eventually be notified that the event it was waiting for has now occurred, which means it can wake up and reacquire

the lock.

7.7.3 Differences between Monitors and Semaphores Both Monitors and Semaphores are used for the same purpose –

thread synchronization. But, monitors are simpler to use than semaphores because they handle all of the details of lock

acquisition and release. An application using semaphores has to release any locks a thread has acquired when the

application terminates – this must be done by the application itself. If the application does not do this, then any other

thread that needs the shared resource will not be able to proceed. Another difference when using semaphores is that

every routine accessing a shared resource has to explicitly acquire a a lock before using the resource. This can be easily

forgotten when coding the routines dealing with multithreading. Monitors, unlike semaphores, automatically acquire the

necessary locks.

7.8 Summary Process synchronization mean the coordination of simultaneious threads or processes to complete a task

in order to get correct runtime order and avoid unexpected race conditions. On the other hand data synchronization is

to keep multiple copies of dataset in coherence with one another. A critical section is a piece of code that accesses a

shared resource. And critical section problem is to

61 of 210 5/3/2023, 10:31 AM

100% MATCHING BLOCK 136/301

ensure that when one process is executing in its critical section, no other process is allowed to execute in its critical

section.

Semaphores are used to help with synchronization. If multiple processes share a common resources, they need a way to

be able to use that resource without disrupting each other. You want each process to be able to read from and write to

that resource uninterrupted. A semaphore will either allow or disallow access to the resource, depending on how it is set

up.

Self-Assessment Questions 1. Explain Process Synchronization. How it is different from Data Synchronization? 2. What is

Critical Section Problem. Explain its general structure. 3. Write some hardware instruction used for solving critical section

problem. 4. Explain Semaphore and its different

66% MATCHING BLOCK 138/301 INF_1036.pdf (D164968063)

types. Unit 8: Deadlocks 8.1 Objective After studying this unit you will be able to understand about

deadlocks and

75% MATCHING BLOCK 139/301
InstructorsSolutions_ExcerciseQuestions.pdf

(D147754554)

conditions for deadlocks like mutual exclusion, hold and wait, no-preemption and circular wait.

You will be able to understand about algorithms like bankers algorithm to avoid deadlocks. Also, you will get ideas about

ways to detect deadlocks and recover from them.

8.2 Introduction A deadlock is a situation wherein two or more competing actions are each waiting for the other to

finish.

Deadlock is a common problem in multiprocessing where many processes share a specific type of mutually exclusive

resource known as a software lock or

soft lock. Computers intended for the time-sharing and/or real-time markets are often equipped with a hardware lock

(or hard lock) which guarantees exclusive access to processes, forcing serialized access. Deadlocks are particularly

troubling because there is no general solution to avoid (soft) deadlocks. Examples:

56% MATCHING BLOCK 140/301 Operating System.pdf (D30089487)

This situation may be like, two people who are drawing diagrams, with only one pencil and one ruler between them. If

one person takes the pencil and the other takes the ruler, a deadlock occurs when the person with the pencil needs

the ruler and the person with the ruler

needs the pencil to finish his work with the ruler. Neither request can be satisfied, so a deadlock occurs.

When two trains approach each other at a crossing, both shall come to a full stop and neither shall start up again until

the other has gone.

An example of a deadlock which may occur in database products is the following. Client applications using the database

may require exclusive access to a table, and in order to gain exclusive access they ask for a lock. If one client application

holds a lock on a table and attempts to obtain the lock on a second table that is already held by a second client

application, this may lead to deadlock if the second application then attempts to obtain the lock that is held by the first

application. (This particular type of deadlock could be prevented, by using an all-or-none resource allocation algorithm.)

8.3 Necessary Conditions for Deadlocks

62 of 210 5/3/2023, 10:31 AM

75% MATCHING BLOCK 143/301 Operating System.pdf (D30089487)

There are four necessary conditions for a deadlock to occur 1. Mutual Exclusion: A resource that cannot be used by

more than one process at a time 2.

42% MATCHING BLOCK 141/301

one process at a time 2. Hold and Wait: Processes already holding resources may request new resources held by other

processes 3. No Preemption: No resource can be

42% MATCHING BLOCK 142/301

one process at a time 2. Hold and Wait: Processes already holding resources may request new resources held by other

processes 3. No Preemption: No resource can be

forcibly removed from a process holding it,

resources can be released only by the explicit action of

the process. Circular Wait:

93% MATCHING BLOCK 144/301 Operating System.pdf (D30089487)

Two or more processes form a circular chain where each process waits for a resource that the next process in the

chain

holds. When circular waiting is triggered by mutual exclusion operations it is sometimes called lock inversion.

Figure 8.1: The

traffic deadlock Consider each section of the street as a resource. 1. Mutual exclusion condition applies, since only one

vehicle can be on a section of the street at a time. 2. Hold-and-wait condition applies, since each vehicle is occupying a

section of the street and waiting to move on to the next section of the street. 3. No-preemptive condition applies, since a

section

of the street that is a section of the street that is occupied by a vehicle cannot be taken away from it. 4. Circular wait

condition applies, since each vehicle is waiting on the next vehicle to move. That is,

each vehicle in the traffic is waiting for a section of street held by the next vehicle in the

traffic. The simple rule to avoid traffic deadlock is that a vehicle should only enter an intersection if it is assured that it will

not have to stop inside the intersection.

8.4

Prevention

All four conditions are necessary for deadlock to occur, it follows that

deadlock might be prevented by denying any one of the conditions

8.4.1 Elimination of “Mutual Exclusion” Condition

The mutual exclusion condition must hold for non-sharable resources.

That is, several processes cannot simultaneously share a single resource. This condition is difficult to eliminate

because some resources, such as the tap drive and printer, are inherently non-shareable.

Note that shareable resources like read-only-file

do not require mutually exclusive access and thus cannot be involved in deadlock.

8.4.2

Elimination of “Hold and Wait” Condition There are two possibilities for elimination of the second condition. The first

alternative is that a process request be granted all

of

63 of 210 5/3/2023, 10:31 AM

the resources it needs at once, prior to execution. The second alternative is to disallow a process from requesting

resources whenever it has previously allocated resources. This strategy requires that all

of

the resources a process will need must be requested at once. The system must grant resources on “all or none” basis. If

the complete set of resources needed by a process is not currently available, then the process must wait until the

complete set is available. While the process waits, however, it may not hold any resources. Thus the “wait for” condition is

denied and deadlocks simply cannot occur. This strategy can lead to serious waste of resources.

For example, a program requiring ten tap drives must request and receive all ten derives before it begins executing. If the

program needs only one tap drive to begin execution and then does not need the remaining tap drives for several hours.

Then substantial computer resources (9 tape drives) will sit idle for several hours. This strategy can cause indefinite

postponement (starvation). Since not all the required resources may become available at once.

8.4.3 Elimination of “No-preemption” Condition The

no

preemption condition can be alleviated by forcing a process waiting for a resource that cannot immediately be allocated

to relinquish all of its currently held resources, so that other processes may use them to finish.

Suppose a system does allow processes to hold resources while requesting additional resources. Consider what happens

when a request cannot be satisfied. A process holds resources a second process may need in order to proceed while

second process may hold the resources needed by the first process. This is a deadlock.

This strategy require that when a process that is holding some resources is denied a request for additional resources. The

process must release its held resources and, if necessary, request them again together with additional resources.

Implementation of this strategy denies the “no-preemptive” condition effectively.

8.4.4

Elimination of “Circular Wait” Condition The last condition, the circular wait, can be denied by imposing a total ordering

on all of the resource types and than forcing, all processes to request the resources in order (increasing or decreasing).

This strategy

82% MATCHING BLOCK 145/301

impose a total ordering of all resources types, and to require that each process requests resources in

a numerical order (increasing or decreasing)

of enumeration.

100% MATCHING BLOCK 146/301 INF_1036.pdf (D164968063)

With this rule, the resource allocation graph can never have

a cycle.

Figure 8.2 : Provide a global numbering of all the resources 1 = Card reader 2 = Printer 3 = Plotter 4 = Tape drive 5 =

Card punch Now the rule is this:

95% MATCHING BLOCK 147/301 INF_1036.pdf (D164968063)

processes can request resources whenever they want to, but all requests must be made in numerical order. A process

may request first printer and then a tape drive (order: 2, 4), but it may not request first a plotter and then a printer (

order: 3, 2). The problem with this strategy is that it may be impossible to find an ordering that satisfies everyone.

8.5

Deadlock Avoidance

64 of 210 5/3/2023, 10:31 AM

96% MATCHING BLOCK 148/301 Operating System.pdf (D30089487)

This approach to the deadlock problem anticipates deadlock before it actually occurs. This approach employs an

algorithm to access the possibility that deadlock could occur and acting accordingly. This method differs from

deadlock prevention, which guarantees that deadlock cannot occur by denying one of the necessary conditions of

deadlock.

If the necessary conditions for a deadlock are in place, it is

still possible to avoid deadlock by being careful when resources are allocated.

Perhaps the most famous deadlock avoidance algorithm,

due to

Dijkstra, is the Banker’s algorithm.

So named because the process is analogous to that used by a banker in deciding if a loan can be safely made.

8.5.1 Banker’s Algorithm

In this analogy, customers are processes, Units are reprocess, say tape drive and Bauker in the operating system.

Customers Used Max A 0 6 B 0 5 Available C 0 4 Units = 10 D 0 7 Figure 8.3

In the above figure, we see four customers each of whom has been granted a number of credit units. The banker

reserved only 10 units rather than 22 units to service them. At certain moment, the situation becomes

Customers Used

Max A 1 6 B 1 5 C 2 4 D 4 7 Figure 8.4

Safe State The key to a state being safe is that there is at least one way for all users to finish. In other analogy, the state of

figure 2 is safe because with 2 units left, the banker can delay any request except

C’s,

thus letting C finish and release all four resources. With four units in hand, the banker can let either D or B have the

necessary units and so on. Unsafe State Consider what would happen if a request from B for one more unit were granted

in

above figure 2. We would have following situation

Customers Used

Max A 1 6 B 2 5 Available C 2 4 Units = 1 D 4 7

Figure 8.5 This is an unsafe state. If all the customers namely A, B, C, and D asked

for their maximum loans, then banker could not satisfy any of them and we would have a deadlock.

Important

Note: It is important to note that an unsafe state does not imply the existence or even the eventual existence a deadlock.

What an unsafe state does imply is simply that some unfortunate sequence of events might lead to a deadlock. The

Banker’s algorithm is thus to consider each request as it occurs and see if

97% MATCHING BLOCK 154/301 INF_1036.pdf (D164968063)

granting it leads to a safe state. If it does, the request is granted, otherwise, it postponed until later.

Haberman [1969] has shown that executing of the algorithm has complexity proportional to N2 where N is the number

of processes and since the algorithm is executed each time a resource request occurs, the overhead is significant.

8.6

Deadlock Detection

65 of 210 5/3/2023, 10:31 AM

Deadlock detection is the process of actually determining that a deadlock exists and identifying the processes and

resources involved in the deadlock. The basic idea is to check allocation against resource availability for all possible

allocation sequences to determine if the system is in deadlocked state a. Of course, the deadlock detection algorithm is

only half of this strategy. Once a deadlock is detected, there needs to be a way to recover several alternatives exists: •

Temporarily prevent resources from deadlocked processes. • Back off a process to some check point allowing

preemption of a needed resource and restarting the process at the checkpoint later. • Successively kill processes until the

system is deadlock free. These methods are expensive in the sense that each iteration calls the detection algorithm until

the system proves to be deadlock free. The complexity of algorithm is O(N2) where N is the number of proceeds.

Another potential problem is starvation; same process killed repeatedly.

8.7 Recovery

from Deadlock • There are

two options for breaking a deadlock: o To abort one or more processes to break the circular wait (Process Termination).

o To preempt some resources from one or more of

deadlock processes (Resource Preemption). 8.7.1 Recovery from Deadlock: Process Termination • Two methods

to eliminate deadlocks by aborting a process.

In both methods, the system reclaims all resources allocated to the terminated processes:

o Abort all deadlocked processes: It will break the deadlock cycle, but

a great expense. o

Abort one process at a time until the deadlock cycle is eliminated:

Overhead, since, after each process aborted

a deadlock-detection algorithm must be invoked to determine whether

any processes are still deadlocked. •

In which order should we choose to abort?

o

Priority of the process. o

How long process has computed, and how much longer

to completion. o Resources the process has used.

o

Resources

76% MATCHING BLOCK 149/301

process needs to complete. o How many processes will need to be terminated? 8.7.2

Recovery from Deadlock: Resource Preemption

If preemption is required to deal with deadlocks, then three issues need to be addressed:

Selecting a victim – which resources and which processes are to be preempted? (

Minimize cost)

Rollback –

If we preempt a resource from a process, what should be done with that process?

We

must roll back the process to some safe state and restart it from that state.

Starvation –

That is

same process may always be picked as victim, include number of rollback

is cost factor.

Insure that a

starvation will not occur. That is

Guarantee

that resources will not always be preempted from the same process.

8.8

66 of 210 5/3/2023, 10:31 AM

Summary In a

multiprogramming environment, several process compete for resources. A situation may arise where a process is waiting

for a resource that is

100% MATCHING BLOCK 150/301

held by other waiting processes. This situation is called a deadlock.

100% MATCHING BLOCK 151/301

held by other waiting processes. This situation is called a deadlock.

A system has a finite set of resources

such as memory, I/O devices, etc. It also has a finite set of processes that need to used these resources. A process that

wishesh to use any of these resources, makes a request to use that resource. If the resource is free the process gets it. If

it is being used by another process, it waits for it to become free. The assumption is that the resource will eventually

become free and the waiting process will then used the resources. But in some situations, the other process may also be

waiting for some resource.

Self Assessment Questions 1. How can we deal with deadlock? 2. What is the difference between prevention and

avoidance? 3. What are examples of strategies for prevention? 4. What happens to a process if resources it is holding are

preempted? 5. Is it safe for the process to just go on executing? 6. Short of killing the process that is preempted, how

might this problem be addressed? 7. What is the difference between a safe state and a deadlock-free state? 8. What is a

sufficient condition for deadlock in each of these models? 9. What you understand by safe and unsafe state? Explain

banker’s algorithm. with necessary data structure for deadlock avoidance. 10. Explain how can we eliminating deadlock

by aborting deadlock. 11. How can we recover from deadlock? a) Process termination. b) Resource preemption. 12.

Explain how we eliminating deadlock by resource preemption can. a) Selecting victim. b) Rollback. c) Starvation. 13.

Explain the algorithm that examines whether the deadlock has accured. a) Single instance of each resource type. b)

Several instance of each resource type. 14. Explain the two deadlock avoidance algorithms. a) Safe state. b) Resource

allocation graph algorithm. 15. Explain how we can prevent deadlock.

Unit 9: Memory Management

9.1

Objective

After studying this unit you will be able to understand

basic hierarchy of different types of memories available in a computer system on the basis of speed and capacity. You will

be able to know the concepts of loading, linking and memory allocation for different processes. You will learn about

physical and logical address space and paging algorithms.

67 of 210 5/3/2023, 10:31 AM

9.2 Introduction The Memory Management is the part of the operating system that must solve the above issues. In other

words memory management is about sharing memory so that the largest number of processes can run in the most

efficient way. Memory management is a collection of techniques for providing sufficient memory to one or more

processes in a computer system, especially when the system does not have enough memory to satisfy all processes'

requirements simultaneously. Techniques include swapping, paging and virtual memory. Memory management is usually

performed mostly by a hardware memory management unit. The von Neumann principle for the design and operation of

computers requires that a program has to be primary memory resident to execute. Also, a user requires revisiting his

programs often during its evolution. However, due to the fact that primary memory is volatile, a user needs to store his

program in some non-volatile store. All computers provide a non-volatile secondary memory available as an online

storage. Programs and files may be disk resident and downloaded whenever their execution is required. Therefore, some

form of memory management is needed at both primary and secondary memory levels. Secondary memory may store

program scripts, executable process images and data files. It may store applications, as well as, system programs. In fact,

a good part of all OS, the system programs which provide services (the utilities for instance) are stored in the secondary

memory. These are requisitioned as needed. The main motivation for management of main memory comes from the

support for multiprogramming. Several executables processes reside in main memory at any given time. In other words,

there are several programs using the main memory as their address space. Also, programs move into, and out of, the

main memory as they terminate, or get suspended for some IO, or new executables are required to be loaded in main

memory. So, the OS has to have some strategy for main memory management. In this chapter we shall discuss the

management issues and strategies for both main memory and secondary memory. Let us begin by examining the issues

that prompt the main memory management. Allocation: First of all the processes that are scheduled to run must be

resident in the memory. These processes must be allocated space in main memory. Swapping, fragmentation and

compaction: If a pro- gram is moved out or terminates, it creates a hole, (i.e. a contiguous unused area) in main memory.

When a new process is to be moved in, it may be allocated one of the available holes. It is quite possible that main

memory has far too many small holes at a certain time. In such a situation none of these holes is really large enough to

be allocated to a new process that may be moving in. The main memory is too Operating Systems/Memory

management fragmented. It is, therefore, essential to attempt compaction. Compaction means OS re-allocates the

existing programs in contiguous regions and creates a large enough free area for allocation to a new process. Garbage

collection: Some programs use dynamic data structures. These programs dynamically use and discard memory space.

Technically, the deleted data items (from a dynamic data structure) release memory locations. However, in practice the

OS does not collect such free space immediately for allocation. This is because that affects performance. Such areas,

therefore, are called garbage. When such garbage exceeds a certain threshold, the OS would not have enough memory

available for any further allocation. This entails compaction (or garbage collection), without severely affecting

performance. Protection: With many programs residing in main memory it can happen that due to a programming error

(or with malice) some process writes into data or instruction area of some other process. The OS ensures that each

process accesses only to its own allocated area, i.e. each process is protected from other processes. Virtual memory:

Often a processor sees a large logical storage space (a virtual storage space) though the actual main memory may not be

that large. So some facility needs to be provided to translate a logical address available to a processor into a physical

address to access the desired data or instruction. IO support: Most of the block-oriented devices are recognized as

specialized files. Their buffers need to be managed within main memory alongside the other processes. The

considerations stated above motivate the study of main memory management. One of the important considerations in

locating an executable program is that it should be possible to relocate it any where in the main memory.

9.3 Memory Hierarchy There is main memory that communicates directly with the C.P.U as shown in below figure. There

is secondary or auxiliary memory which indirectly communicates with the main memory through input /output

processor. Cache memory is placed between main-memory and C.P.U. 1. Cache Memory-it is less than or equal to

4MB.Acess time is 3-10 nano seconds (10-9), managed by hardware and backed by main-memory. 2. Main-Memory-It is

greater than or equal to 1GB.Access time is 80-400 nano seconds, managed by operating system and back up by hard

disk. 3. Disk storage-It is greater than 1 GB. Access time is 5, 000, 000, managed by operating system and user and

backed by magnetic tape.

Figure 1: Diagram of hierarchy of memory organization in a computer

Address Binding

68 of 210 5/3/2023, 10:31 AM

100% MATCHING BLOCK 152/301

User programs typically refer to memory addresses with symbolic names such as “i”, “count”, and “

aver- age

100% MATCHING BLOCK 153/301

Temperature”. These symbolic names must be mapped or bound to physical memory addresses, which typically occurs

in several stages: •

100% MATCHING BLOCK 155/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

Compile Time - If it is known at compile time where

100% MATCHING BLOCK 156/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245827)

Compile Time - If it is known at compile time where

a program will reside in physical memory, then absolute code can be generated by the compiler, containing actual

physical addresses. However if the load address changes at some later time, then the program will have to be

recompiled. DOS .COM programs use compile time binding. • Load Time - If the location at which a program will be

loaded is not known at compile time, then the compiler must generate relocatable code, which references addresses

relative to the start of the program. If that starting address changes, then the program must be reloaded but not

recompiled. • Execution Time - If a program can be moved around in memory during the course of its execution, then

binding must be delayed until execution time. This requires special hardware, and is the method implemented by most

modern OSes. Figure 2: shows the various stages of the binding processes and the units involved in each stage:

Logical Versus Physical

94% MATCHING BLOCK 158/301 Operating System.pdf (D30089487)

Address Space • The address generated by the CPU is a logical address, whereas the address actually seen by the

memory hardware is a physical address. • Addresses bound at compile time or load time have identical logical and

physical addresses. • Addresses created at execution time, have different logical and physical addresses.

47% MATCHING BLOCK 157/301 INF_1036.pdf (D164968063)

The address generated by the CPU is a logical address, whereas the address actually seen by the memory hardware is a

physical address. •

o In this case

100% MATCHING BLOCK 159/301 OS_SLM_Revised.pdf (D155071872)

the logical address is also known as a virtual address,

and the two terms are used interchangeably by our text. o

69 of 210 5/3/2023, 10:31 AM

100% MATCHING BLOCK 160/301 Operating System.pdf (D30089487)

The set of all logical addresses used by a program composes the logical address space, and the set of all

corresponding physical addresses composes the physical address space. • The run time mapping of logical to physical

addresses is handled by the memory-management unit, MMU.

o The MMU can take on many forms. One of the simplest

is a modification of the base- register scheme described earlier. o

The base register is now termed a

relocation register,

81% MATCHING BLOCK 161/301 Operating System.pdf (D30089487)

whose value is added to every memory request at the hardware level. Figure 3: Dynamic relocation using a relocation

register

Dynamic loading & linking

Dynamic Loading • Rather than loading an entire program into memory at once, dynamic loading loads up each routine

as it is called. The advantage is that unused routines need never be loaded, reducing total memory usage and generating

faster program startup times. The downside is the added complexity and overhead of checking to see if a routine is

loaded every time it is called and then loading it up if it is not already loaded. Dynamic Linking and Shared Libraries • With

static linking library modules get

85% MATCHING BLOCK 162/301 OS_SLM_Revised.pdf (D155071872)

fully included in executable modules, wasting both disk space and main memory usage, because

every program that included a certain routine from the library would have to have their own copy of that routine linked

into their executable code. • With dynamic linking, however, only a stub is linked into the executable module, containing

references to the actual library module linked in at run time. o This method saves disk space, because the library routines

do not need to be fully included in the executable modules, only the stubs. o We will also learn that if the code section of

the library routines is reentrant, (meaning it does not modify the code while it runs, making it safe to re-enter it), then

main memory can be saved by loading only one copy of dynamically linked routines into memory and sharing the code

amongst all processes that are concurrently using it. (Each process would have their own copy of the data section of the

routines, but that may be small relative to the code segments.) Obviously the OS must manage shared routines in

memory. o An added benefit of dynamically linked libraries (DLLs, also known as shared libraries or shared objects on

UNIX systems) involves easy upgrades and updates. When a program uses a routine from a standard library and the

routine changes, then the program must be re-built (re-linked) in order to incorporate the changes. However, if DLLs are

used, then as long as the stub doesn’t change, the program can be updated merely by loading new versions of the DLLs

onto the system. Version information is maintained in both the program and the DLLs, so that a program can specify a

particular version of the DLL if necessary. o In practice,

73% MATCHING BLOCK 163/301 Operating System.pdf (D30089487)

the first time a program calls a DLL routine, the stub will recognize the fact and will replace itself with the actual routine

from the DLLlibrary. Further calls to the same routine will access the routine directly and not incur the overhead of the

stub access.

70 of 210 5/3/2023, 10:31 AM

Swapping • A process must be loaded into memory in order to execute. • If there is not enough memory available to

keep all running processes in memory at the same time, then some processes which are not currently using the CPU

may have their memory swapped out to a fast local disk called the backing store. • If compile-time or load-time address

binding is used, then processes must be swapped back into the same memory location from which they were swapped

out. If execution time binding is used, then the processes can be swapped back into any available location. • Swapping is

a very slow process compared to other operations. For example, if a user process occupied 10 MB and the transfer rate

for the backing store were 40 MB per second, then it would take 1/4 second (250 milliseconds) just to do the data

transfer. Adding in a latency lag of 8 milliseconds and ignoring head seek time for the moment, and further recognizing

that swapping involves moving old data out as well as new data in, the overall transfer time required for this swap is 512

milliseconds, or over half a second. For efficient processor scheduling the CPU time slice should be significantly longer

than this lost transfer time. • To reduce swapping transfer overhead, it is desired to transfer as little information as

possible, which requires that the system know how much memory a process is using, as opposed to how much it might

use. Programmers can help with this by freeing up dynamic memory that they are no longer using. • It is important to

swap processes out of memory only when they are idle, or more to the point, only when there are no pending I/O

operations. (Otherwise, the pending I/O operation could write into the wrong process’s memory space.) The solution is

to either swap only totally idle processes or do I/O operations only into and out of OS buffers, which are then transferred

to or from process’s main memory as a second step.

• Most modern OSes no longer use swapping, because it is too slow and there are faster alternatives available. (E.g.

Paging.) However, some UNIX systems will still invoke swapping if the system gets extremely full, and then discontinue

swapping when the load reduces again.

95% MATCHING BLOCK 166/301 COOS.docx (D142533740)

Figure 4: swapping of two processes using a disk as a backing store

100% MATCHING BLOCK 164/301

Contiguous Memory Allocation One approach to memory management is to load each process into a contiguous

space. The operating system is allocated space first, usually at either low or high memory locations, and then the

remaining available memory is allocated to processes as needed. (

The OS is usually loaded low, because that is where the interrupt vectors are located, but on older systems part of the OS

was loaded high to make more room in low memory (within the 640K barrier) for user processes.)

Memory Mapping and Protection

• The system shown in Figure 5 below allows

100% MATCHING BLOCK 165/301

protection against user programs accessing areas that they should not, allows programs to be relocated to different

memory starting addresses as needed, and allows the memory space devoted to the OS to grow or shrink dynamically

as needs change.

88% MATCHING BLOCK 167/301 COOS.docx (D142533740)

Figure 5: Hardware Support for Relocation and Limit Registers Memory Allocation • One method of

71 of 210 5/3/2023, 10:31 AM

88% MATCHING BLOCK 168/301 COOS.docx (D142535190)

Figure 5: Hardware Support for Relocation and Limit Registers Memory Allocation • One method of

98% MATCHING BLOCK 169/301 OS_Notes_Full.pdf (D108987417)

Memory Allocation • One method of allocating contiguous memory is to divide all available memory into equal sized

partitions, and to assign each process to their own partition. This restricts both the number of simultaneous processes

and the maximum size of each process and is no longer used. • An alternate approach is to keep a list of unused (free)

memory blocks (holes), and to find a hole of a suitable size whenever a process needs to be loaded into memory.

There are many different strategies for finding the “best” allocation of memory to processes, including the three most

commonly discussed: 1.

97% MATCHING BLOCK 170/301 OS_Notes_Full.pdf (D108987417)

First fit - Search the list of holes until one is found that is big enough to satisfy the request, and assign a portion of that

hole to that process. Whatever fraction of the hole not needed by the request is left on the free list as a smaller hole.

Subsequent requests may start looking either from the beginning of the list or from the point at which this search

ended. 2.

100% MATCHING BLOCK 171/301 OS_Notes_Full.pdf (D108987417)

Best fit - Allocate the smallest hole that is big enough to satisfy the request. This saves large holes for other process

requests that may need them later, but the resulting unused portions of holes may be too small to be of any use, and

will therefore be wasted. Keeping the free list sorted can speed up the process of finding the right hole. 3.

100% MATCHING BLOCK 172/301 OS_Notes_Full.pdf (D108987417)

Worst fit - Allocate the largest hole available, thereby increasing the likelihood that the remaining portion will be usable

for satisfying future requests. •

Simulations show

77% MATCHING BLOCK 173/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

that either first or best fit are better than worst fit in terms of both time and storage utilization. First

77% MATCHING BLOCK 174/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245827)

that either first or best fit are better than worst fit in terms of both time and storage utilization. First

100% MATCHING BLOCK 175/301 OS_Notes_Full.pdf (D108987417)

first or best fit are better than worst fit in terms of both time and storage utilization. First and best fits are about equal in

terms of storage utilization, but first fit is faster. 9.4

72 of 210 5/3/2023, 10:31 AM

60% MATCHING BLOCK 176/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

in terms of storage utilization, but first fit is faster. 9.4 Fragmentation • All the memory allocation strategies suffer from

external fragmentation.

External fragmentation means that the available memory is broken up into lots of little pieces, none of which is big

enough to satisfy the next memory requirement. • The amount of memory lost to fragmentation may vary with

algorithm, usage patterns, and some design decisions such as which end of a hole to allocate and which end to save on

the free list. • Statistical analysis of first fit, for example, shows that for N blocks of allocated memory, another 0.5 N will

be lost to fragmentation.

o

Internal fragmentation also occurs, with all memory allocation strategies. This is caused by the fact that memory is

allocated in blocks of a fixed size, whereas the actual memory needed will rarely be that exact size. For a random

distribution of memory requests, on the average 1/2 block will be wasted per memory request, because on the average

the last allocated block will be only half full. o Note that the same effect happens with hard drives, and that modern

hardware gives us increasingly larger drives and memory at the expense of ever larger block sizes, which translates to

more memory lost to internal fragmentation. o Some systems use variable size blocks to minimize losses due to internal

fragmentation. • If the programs in memory are relocatable, (using execution-time address binding), then the external

fragmentation problem can be reduced via compaction, i.e. moving all processes down to one end of physical memory.

This only involves updating the relocation register for each process, as all internal work is done using logical addresses.

9.5

91% MATCHING BLOCK 177/301 OS_Notes_Full.pdf (D108987417)

Paging • Paging is a memory management scheme that allows processes physical memory to be discontinuous, and

which eliminates problems with fragmentation by allocating memory in equal sized blocks known as pages. • Paging

eliminates most of the problems

of the other methods discussed previously and is the predominant memory management technique used today.

Basic Method • The basic idea behind paging is to divide physical memory into a number of equal sized blocks called

frames, and to divide

a

programs logical memory space into blocks of the same size called pages. • Any page (from any process) can be placed

into any available frame.

• The page table is used to look up what frame a particular page is stored in at the moment. In the following example, for

instance, page 2 of the program’s logical memory is currently stored in frame 3 of

95% MATCHING BLOCK 178/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

physical memory: Figure 6: Paging model of logical and physical memory • A

95% MATCHING BLOCK 179/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245827)

physical memory: Figure 6: Paging model of logical and physical memory • A

73 of 210 5/3/2023, 10:31 AM

logical address consists of two parts: A page number in which the address resides, and an offset from the beginning of

that page. (The number of bits in the page number limits how many pages a single process can address. The number of

bits in the offset determines the maximum size of each page and should correspond to the system frame size.) • The

page table maps the page number to a frame number, to yield a physical address which also has two parts: The frame

number and the offset within that frame. The number of bits in the frame number determines how many frames the

system can address, and the number of bits in the offset determines the size of each frame. • Page numbers, frame

numbers, and frame sizes are determined by the architecture, but are typically powers of two, allowing addresses to be

split at a certain number of bits. For example, if the logical address size is 2^m and the

70% MATCHING BLOCK 180/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

page size is 2^n, then the high-order m-n bits of a logical address designate the page number and the remaining n bits

represent the offset.

Note also that the number of bits in the page number and the number of bits in the frame number do not have to be

identical. The former determines the address range of the logical address space, and the latter relates to the physical

address space.

• (DOS used to use an addressing scheme with 16-bit frame numbers and 16-bit offsets, on hardware that only

supported 24-bit hardware addresses. The result was a resolution of starting frame addresses finer than the size of a

single frame, and multiple frame-offset combinations that mapped to the same physical hardware address.)

Figure 7: Paging

Hardware

• Consider the following micro example, in which a process has 16 bytes of logical memory, mapped in 4 byte pages into

32 bytes of physical memory. (Presumably some other processes would be consuming the remaining 16 bytes of

physical memory.)

100% MATCHING BLOCK 181/301 OS_SLM_Revised.pdf (D155071872)

Figure 8: Paging example for a 32-byte memory with 4-byte pages •

Note that paging is like having a table of relocation registers, one for each page of the logical memory. • There is no

external fragmentation with paging. All blocks of physical memory are used, and there are no gaps in between and no

problems with finding the right sized hole for a particular chunk of memory. • There is, however, internal fragmentation.

Memory is allocated in chunks the size of a page, and on the average, the last page will only be half full, wasting on the

average half a page of memory per process. (Possibly more, if processes keep their code and data in separate pages.) •

Larger page sizes waste more memory but are more efficient in terms of overhead. Modern trends have been to increase

page sizes, and some systems even have multiple size pages to try and make the best of both worlds. • Page table entries

(frame numbers) are typically 32-bit numbers, allowing access to 2^32 physical page frames. If those frames are 4 KB in

size each, that translates to 16 TB of addressable physical memory. (32 + 12 = 44 bits of physical address space.) • When

a process requests memory (e.g., when its code is loaded in from disk), free frames are allocated from a free-frame list,

and inserted into that process’s page table. • Processes are blocked from accessing anyone else’s memory because all of

their memory requests are mapped through their page table. There is no way for them to generate an address that maps

into any other process’s memory space. • The operating system must keep track of each individual process’s page table,

updating it

when- ever

the process’s pages get moved in and out of memory, and applying the correct page table when processing system calls

for a particular process. This all increases the overhead involved when swapping processes in and out of the CPU. (The

currently active page table must be updated to reflect the process that is currently running.)

Figure 9: Free frames

74 of 210 5/3/2023, 10:31 AM

Hardware Support • Page lookups must be done for every memory reference, and whenever a process gets swapped in

or out of the CPU, its page table must be swapped in and out too, along with the instruction registers, etc. It is therefore

appropriate to provide hardware support for this operation, in order to make it as fast as possible and to make process

switches as fast as possible also. • One option is to use a set of registers for the page table. For example, the DEC PDP-11

uses 16-bit addressing and 8 KB pages, resulting in only 8 pages per process. (It takes 13 bits to address 8 KB of offset,

leaving only 3 bits to define a page number.) • An alternate option is to store the page table in main memory, and to use

a single register (called the page-table base register, PTBR) to record where in memory the page table is located. o

Process switching is fast, because only the single register needs to be changed. o However, memory access just got half

as fast, because every memory access now requires two memory accesses - One to fetch the frame number from

memory and then another one to access the desired memory location. o The solution to this problem is to use a very

special high-speed memory device called the translation look-aside buffer, TLB. • The benefit of the TLB is that it can

search an entire table for a key value in parallel, and if it is found anywhere in the table, then the corresponding lookup

value is returned.

Figure 10: Paging hardware with TLB

• The TLB is very expensive, however, and therefore very small. (Not large enough to hold the entire page table.) It is

therefore used as a cache device. • Addresses are first checked against the TLB, and if the info is not there (a TLB miss),

then the frame is looked up from main memory and the TLB is updated. • If the

59% MATCHING BLOCK 190/301 Operating System.pdf (D30089487)

TLB is full, then replacement strategies range from least-recently used, LRU to random. • Some TLBs allow some

entries to be

wired down, which means that they cannot be removed from the TLB. Typically, these would be kernel frames. • Some

TLBs store address-space identifiers, ASIDs, to keep track of which process “owns” a particular entry in the TLB. This

allows entries from multiple processes to be stored simultaneously in the TLB without granting one process access to

some other process’s memory location. Without this feature the TLB has to be flushed clean with every

process switch. •

52% MATCHING BLOCK 182/301

The percentage of time that the desired information is found in the TLB is termed the hit ratio. • For example, suppose

that

it takes 100 nanoseconds to access main memory, and only 20 nano- seconds to search the TLB. So a TLB hit takes 120

nanoseconds total (20 to find the frame number and then another 100 to go get the data), and a TLB miss takes 220 (

20 to search the TLB, 100 to go get the frame number, and then another 100 to go get the data.) So, with an 80% TLB hit

ratio, the average memory access time would be: 0.80 * 120 + 0.20 * 220 = 140 nanoseconds for a 40% slowdown to

get the frame number. A 98% hit rate would yield 122 nanoseconds average access time (you should verify this), for a

22% slowdown.

Protection • The page table can also help to protect processes from accessing memory that they shouldn’t, or their own

memory in ways that they shouldn’t. • A bit or bits can be added to the page table to classify a page as read-write, read-

only, read- write-execute, or some combination of these sorts of things. Then each memory reference can be checked

to ensure it is accessing the memory in the appropriate mode. • Valid / invalid bits can be added to “mask off” entries in

the page table that are not in use by the current process, as shown by example in Figure 8.12 below. • Note that the valid

/ invalid bits described above cannot block all illegal memory accesses, due to the internal fragmentation. (Areas of

memory in the last page that are not entirely filled by the process and may contain data left over by whoever used that

frame last.) • Many processes do not use all of the page table available to them, particularly in modern systems with very

large potential page tables. Rather than waste memory by creating a full-size page table for every process, some systems

use a page-table length register, PTLR, to specify the length of

75 of 210 5/3/2023, 10:31 AM

88% MATCHING BLOCK 183/301

the page table. Figure 11: Valid(v) or invalid(i) bit in a page table 9.6

Shared Pages •

Paging systems can make it very easy to share blocks of memory, by simply duplicating page numbers in multiple page

frames. This may be done with either code or data. • If code is reentrant, that means that it does not write to or change

the code in any way (it is non self-modifying), and it is therefore safe to re-enter it. More importantly, it means the code

can be shared by multiple processes, so long as each has their own copy of the data and registers, including the

instruction register. • In the example given below, three different users are running the editor simultaneously, but the

code is only loaded into memory (in the page frames) one time. • Some systems also implement shared memory in this

fashion.

Figure12: Sharing of code in a paging environment

Basic method • Most users (programmers) do not think of their programs as existing in one continuous linear address

space. • Rather they tend to think of their memory in multiple segments, each dedicated to a particular use, such as

code, data, the stack, the heap, etc. • Memory segmentation supports this view by providing addresses with a segment

number (mapped to a segment base address) and an offset from the beginning of that segment. • For example, a C

compiler might generate 5 segments for the user code, library code, global (static) variables, the stack, and the heap, as

shown in Fig.

Figure13: User’s view of a program

Hardware • A segment table maps segment-offset addresses to physical addresses, and simultaneously checks for invalid

addresses, using a system similar to the page tables and relocation base registers discussed previously. (Note that at this

point in the discussion of segmentation, each segment is kept in contiguous memory and may be of different sizes, but

that segmentation can also be combined with paging as we shall see shortly.)

Figure14: Segmentation Hardware 9.7 Kernel memory Allocation Kernel memory Allocation is treated differently from

user memory. They are often allocated from a free memory pool. Kernel required memory for structures of varying size,

some Kernel memory needs to be contiguous. Kernel Memory Allocation in Unix and Solaris is through Buddy System

and Slab Allocator. Buddy Allocator In the buddy system, the memory is broken down into power-of-two sized naturally

aligned blocks. These blocks are organized in an array of lists, in which the list with index i contains all unallocated blocks

of size 2i. The index i is called the order of block. There should be two adjacent equally sized blocks in the list i (i.e.

buddies), the buddy allocator would coalesce them and put the resulting block in list i + 1, provided that the resulting

block would be naturally aligned. Similarly, when the allocator is asked to allocate a block of size 2i, it first tries to satisfy

the request from the list with index i. If the request cannot be satisfied (i.e. the list i is empty), the buddy allocator will try

to allocate and split a larger block from the list with index i + 1. Both of these algorithms are recursive. The recursion

ends either when there are no blocks to coalesce in the former case or when there are no blocks that can be split in the

latter case. This approach greatly reduces external fragmentation of memory and helps in allocating bigger continuous

blocks of memory aligned to their size. On the other hand, the buddy allocator suffers increased internal fragmentation

of memory and is not suitable for general kernel allocations. This purpose is better ad- dressed by the slab allocator.

Figure 15: Buddy system scheme. Implementation The buddy allocator is, in fact, an abstract framework which can be

easily specialized to serve one particular task. It knows nothing about the nature of memory it helps to allocate. In order

to beat the lack of this knowledge, the buddy allocator exports an interface that each of its clients is required to

implement. When supplied with an implementation of this interface, the buddy allocator can use specialized external

functions to find a buddy for a block, split and coalesce blocks, manipulate block order and mark blocks busy or

available. Data organization. Each entity allocable by the buddy allocator is required to contain space for storing block

order number and a link variable used to interconnect blocks within the same order. Whatever entities are allocated by

the buddy allocator, the first entity within a block is used to represent the entire block. The first entity keeps the order of

the whole block. Other entities within the block are assigned the magic value BUDDY_INNER_BLOCK. This is especially

important for effective identification of buddies in a one-dimensional array because the entity that represents a potential

buddy cannot be associated with BUDDY_INNER_BLOCK (i.e., if it is associated with BUDDY_INNER_BLOCK then it is not

a buddy).

76 of 210 5/3/2023, 10:31 AM

Slab allocator The majority of memory allocation requests in the kernel is for small, frequently used data structures. The

basic idea behind the slab allocator is that commonly used objects are preallocated in continuous areas of physical

memory called slabs. Whenever an object is to be allocated, the slab allocator returns the first available item from a

suitable slab corresponding to the object type. Due to the fact that the sizes of the requested and allocated object

match, the slab allocator significantly reduces internal fragmentation. Slab of one object type are organized in a structure

called slab cache. There are ususally more slabs in the slab cache, depending on previous allocations. If the slab cache

runs out of available slabs, new slabs are allocated. In order to exploit parallelism and to avoid locking of shared

spinlocks, slab caches can have variants of processor-private slabs called magazines. On each processor, there is a two-

magazine cache. Full magazines that are not part of any per-processor magazine cache are stored in a global list of full

magazines. Each object begins its life in a slab. When it is allocated from there, the slab allocator calls a constructor that

is registered in the respective slab cache. The constructor initializes and brings the object into a known state. The object

is then used by the user. When the user later frees the object, the slab allocator puts it into a processor private magazine

cache, from where it can be precedently allocated again. Note that allocations satisfied from a magazine are already

initialized by the constructor. When both of the processor cached magazines get full, the allocator will move one of the

magazines to the list of full magazines. Similarily, when allocating from an empty processor magazine cache, the kernel

will reload only one magazine from the list of full magazines. In other words, the slab allocator tries to keep the

processor magazine cache only half-full in order to prevent thrashing when allocations and deallocations interleave on

magazine boundaries. The advantage of this setup is that during most of the allocations, no global spinlock needs to be

held.

Figure 16: Slab allocator scheme. Implementation The slab allocator is closely modelled after with the following

exceptions: • empty slabs are immediately deallocated and • empty magazines are deallocated when not needed. The

following features are not currently supported but would be easy to do: • cache coloring and • dynamic magazine grow

(different magazine sizes are already supported, but the allocation strategy would need to be adjusted).

Allocation/deallocation The following two paragraphs summarize and complete the description of the slab allocator

operation (i.e. slab_alloc() and slab_free() functions). Allocation. Step 1. When an allocation request comes, the slab

allocator checks availability of memory in the current magazine of the local processor magazine cache. If the available

memory is there, the allocator just pops the object from magazine and returns it.Step 2. If the current magazine in the

processor magazine cache is empty, the allocator will attempt to swap it with the last magazine from the cache and

return to the first step. If also the last magazine is empty, the algorithm will fall through to Step 3.Step 3. Now the

allocator is in the situation when both magazines in the processor magazine cache are empty. The allocator reloads one

magazine from the shared list of full magazines. If the reload is successful (i.e. there are full magazines in the list), the

algorithm continues with Step 1.Step 4. In this fail-safe step, an object is allocated from the conventional slab layer and a

pointer to it is returned. If also the last magazine is full, Deallocation. Step 1. During a deallocation request, the slab

allocator checks if the current magazine of the local processor magazine cache is not full. If it is, the pointer to the

objects is just pushed into the magazine and the algorithm returns. Step 2. If the current magazine is full, the allocator

will attempt to swap it with the last magazine from the cache and return to the first step. If also the last magazine is

empty, the algorithm will fall through to Step 3. Step 3. Now the allocator is in the situation when both magazines in the

processor magazine cache are full. The allocator tries to allocate a new empty magazine and flush one of the full

magazines to the shared list of full magazines. If it is successfully, the algoritm continues with Step 1. Step 4. In case of

low memory condition when the allocation of empty magazine fails, the object is moved directly into slab. In the worst-

case object deallocation does not need to allocate any additional memory.

9.8 Summary Computer has main memory of RAM. Various architectures enable various uses of such memory, internally,

memory could be accessed in different ways. Processes cannot run unless their code and data structures are in the RAM.

It is in the main memory where instructions reside and are interpreted by the processor. Some important issues related to

the need for memory management include : • Many times an operating system manages many process (multi-

programming). • The code and data for a process must be in RAM before it could be run. • Process must not be able to

access the code and data of other processes without permission. It means that the processes must be protected. •

Processes must be able to access and share the code and data of other processes if they have permission. • There is

usually not enough RAM to hold the code and data for all the currently running processes in RAM.

77 of 210 5/3/2023, 10:31 AM

Self-Assessment Questions 1) What is address space? Difference logical and physical spaces. 2) What is the difference

between static relocation and dynamic relocation? 3) What is segmentation? Explain address translation in segmentation.

4) What is memory fragmentation? What are the internal and External memory fragmentations. 5) In the paging scheme,

what are pages, frame and page table? 6) Explain how page table is used in address translation. 7) Can we use

compaction to solve internal fragmentation problem? Justify your answer. 8) Explain the buddy system for space

allocation. What kind of memory fragmentation does it induce? 9) Explain briefly the role of the compiler, loader, and

memory management hardware in the following address binding schemes: a. compile time binding b. load time binding

c. runtime binding 10) What is dynamic memory management? Why is it used? Which part of the Kernel is stored there?

11) Can we precisely restrict a process within its address space in segmentation, paging and paged segmentation

schemes? justify your answer. 12) Explain slab allocator and how it is implemented. 13) What kind of fragmentations

(external or internal) do the following memory management schemes have? In each case. justify your answer. a. Paging

b. Segmentation with (first fit, best fit and buddy system) c. Paged segmentation 14) What is Swapping and how it is

implemented by virtual memory. 15) Explain memory hierarchy in terms of memory management in operating system.

Unit 10: Introduction to Paging, Segmentation and Segmentation with Paging

10.1

Objective • Introduction

to paging • To provide a detailed description of the segmentation and segmentation with paging. • Structure of page

table etc.

10.2 Introduction

88% MATCHING BLOCK 184/301

Virtual Memory is the separation of user logical memory from physical memory. This separation allows an extremely

large virtual memory for programmers when physical memory is

smaller in size. This makes the task of programmers very easy. In addition to this, VM also allows sharing of files and

memory between several processes and makes implementation of memory protection much easier. Virtual memory can

be implemented by one of the following techniques: 1. Paging 2. Segmentation 3. Segmentation with Paging

Paging Paging is a memory management scheme in which memories as well as processes are divided into fixed size of

blocks. Paging is the schema

87% MATCHING BLOCK 185/301

that permits the logical address space of a process to be noncontiguous.

87% MATCHING BLOCK 186/301

that permits the logical address space of a process to be noncontiguous.

87% MATCHING BLOCK 187/301

that permits the logical address space of a process to be noncontiguous.

Physical memory broken into fixed sized blocks is called Page frames. Logical memory address space/ process

is also broken

into blocks of same size as page frame

called Pages.

When a process is to be executed, its pages are loaded into

any available memory frames

from

78 of 210 5/3/2023, 10:31 AM

secondary storage. The secondary storage

is also

divided into fixed size blocks that are

of the same size as the memory frames.

The

page size is

defined by the hardware and typically a power of two. The size of page typically lies between 512 bytes and 16 MB,

depending upon computer architecture.

Figure 10.1: Address Translation Architecture

Page Table The operating system stores the address translation tables for mapping virtual address to physical address in a

data structure known as a page table. Figure 10.1 : Explain the address translation. •

100% MATCHING BLOCK 188/301

Page table is kept in main memory. • Page-table base register (PTBR) points to the page table. •

95% MATCHING BLOCK 193/301 OS_Notes_Full.pdf (D108987417)

Page table is kept in main memory. • Page-table base register (PTBR) points to the page table. • Page-table length

register (PTLR) indicates size of the page table. • In this scheme every data/instruction access requires two memory

accesses. One for the page table and one for the data/instruction. • The two memory access problem can be solved by

the use of a special fast-lookup hardware cache called associative memory •

100% MATCHING BLOCK 189/301

the page table. • In this scheme every data/instruction access requires two memory accesses. One for the page table

and one for the data/instruction. • The two memory access problem can be solved by the use of a special fast-lookup

hardware cache called associative memory •

97% MATCHING BLOCK 191/301

Address generated by CPU is divided into: Page number (p) - used as an index into a page table which contains base

address of each page in physical memory. Page offset (d) - combined with base address to define the physical memory

address that is sent to the memory unit.

97% MATCHING BLOCK 192/301

Address generated by CPU is divided into: Page number (p) - used as an index into a page table which contains base

address of each page in physical memory. Page offset (d) - combined with base address to define the physical memory

address that is sent to the memory unit.

100% MATCHING BLOCK 194/301 OS_Notes_Full.pdf (D108987417)

Address generated by CPU is divided into: Page number (p) - used as an index into a page table which contains base

address of each page in physical memory. Page offset (d) - combined with base address to define the physical memory

address that is sent to the memory unit.

79 of 210 5/3/2023, 10:31 AM

95% MATCHING BLOCK 195/301 Operating System.pdf (D30089487)

generated by CPU is divided into: Page number (p) - used as an index into a page table which contains base address of

each page in physical memory. Page offset (d) - combined with base address to define the physical memory address

that is sent to the memory unit.

93% MATCHING BLOCK 196/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

If the size f the logical address space is 2m, and a page size is 2n addressing units (bytes or words), then the high order

m-n bits of a logical address designate the page number, and the n low order bits designate the page offset.

93% MATCHING BLOCK 200/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245827)

If the size f the logical address space is 2m, and a page size is 2n addressing units (bytes or words), then the high order

m-n bits of a logical address designate the page number, and the n low order bits designate the page offset.

Figure 10.2: Address Generation

10.2 Segmentation Segment is a logical entity about which the programmer is aware of A segment may contain a

procedure or an array, stack or a collection of scalar variables. Usually it does not contain a mixture of different type of

entities. Each segment has a name and length. To specify address in this segmented memory or two-dimensional

memories, the program needs to supply a two part address, a segment number and address within the segment called

offset. The number of segments present in the system is computer architecture dependent. Some important properties

of segments are • Each segment consists of a linear sequence of addresses, from zero to maximum. • The length of each

segment may be anything from 0 to maximum. • Different segment may have different length. • The segment length may

change during execution. • The OS maintains a free list and allocate segments to memory holes. • Simplifies modification

and recompilation of procedures and facilitate sharing of procedure and data.

A segment table is very similar to the page table. A segment table entry must have fields for storing the segment's starting

address in main memory and the size of the segment. If the maximum segment size is m bits, then last m bits of the

logical address specify the segment offset. The remaining bits specify the segment number. The logical address is

translated into a physical address by extracting

the segment number and offset from the logical address.

89% MATCHING BLOCK 197/301

The segment number is used as an index into the segment table. The offset

89% MATCHING BLOCK 198/301

The segment number is used as an index into the segment table. The offset

is compared to the segment size. If the offset size is greater than the segment size, invalid address faults is generated,

and abort the program. Otherwise, the offset is added to the segment's starting address to generate the physical address.

To increase speed, the size check and physical address generation can be performed concurrently.

Because segments are user defined, it is possible to define certain segments to be read only. By adding a read only bit

into a segment table entry, the memory management system can check for write operations to read only segments and

generate a fault if such an operation is detected.

Figure 10.3: Segmentation

80 of 210 5/3/2023, 10:31 AM

Shared segments may also be used by processes executing different programs but using the same subroutine library. In

this situation, care must be taken that addresses within the shared segment will work with both programs. For addresses

to locations within the segment, the simplest solution is to use relative addressing. Relative addressing uses the offset

from the current value of the program counter to generate the destination address. For all addresses, indirect addressing

through a register pointing to the appropriate segment is also a possibility. Direct addressing, which specifies the

segment and offset of the destination address, is possible only if all programs use the same segment number for the

segment being accessed.

10.3 Segmentation with Paging Segmentation can be combined with paging to provide the efficiency of paging with the

protection and sharing capabilities of segmentation. When paging is added in the segmentation, the segment offset

90% MATCHING BLOCK 199/301

is further divided into a page number and a page offset.

The segment table entry contains the address of the segment's page table. The hardware adds the logical address's page

number bits to the page table address to locate the page table entry. The physical address is formed by appending the

page offset to the page frame number specified in the page table entry.

Figure 10.4: Segmentation with paging

10.4 Basic Hardware Support In the simplest case page table is implemented with the help of dedicated registers.

84% MATCHING BLOCK 201/301

Page table is kept in main memory and a page table base register (PTBR) points to the page table.

100% MATCHING BLOCK 205/301 Operating System.pdf (D30089487)

a page table base register (PTBR) points to the page table.

The problem is there

with this approach is much time require to access a user memory location. If we want to access some location i, we

must get index into the page table from the PTBR offset. This task requires a memory access.

Now we get the page number from the page table and combine

with the page offset to produce the actual address. With this scheme two memory accesses are needed to access a byte.

The most common

solution to this problem is to

use a special small fast lookup hardware cache called

Translation Look-aside Buffer (TLB).

89% MATCHING BLOCK 202/301

The TLB is associative high-speed memory. Each entry in the TLB consists of two parts a key and a value. If the

item is

found the corresponding value field is returned. TLB search

is fast

but hardware is expensive. Generally, the number f entries in TLB are small.

81 of 210 5/3/2023, 10:31 AM

78% MATCHING BLOCK 206/301 Operating System.pdf (D30089487)

TLB contains only few of the page table entries. When a logical address is generated by the CPU, its page number is

given to the TLB. If the page number is found its frame number is immediately available and used to access required

memory. If the page number is not in the TLB (TLB miss) a memory reference to the page table is used to get the frame

number

70% MATCHING BLOCK 203/301

If the page number is not in the TLB (TLB miss) a memory reference to the page table is used to get the frame number

70% MATCHING BLOCK 204/301

If the page number is not in the TLB (TLB miss) a memory reference to the page table is used to get the frame number

from the page table. This frame can be used to access the main memory. This page number and frame number is now

added to the TLB for the future reference. If the TLB is full then OS must replace one of the entry from the TLB. Some

entries from the TLB cannot be removed

are wired down. Some TLBs stores Address Space Identifiers (ASIDs) in each entry

of the

TLB.

An ASID uniquely identifies each process and is used to provide address space protection for that process.

Figure 10.5: Paging with Translation Look-aside Buffer

HIT Ratio:

77% MATCHING BLOCK 208/301 INF_1036.pdf (D164968063)

The percentage of time that a particular page number is fond in the TLB is called the hit ratio. Let Hit Ratio=

h =< Miss Ratio=(1-h) TLB search takes ts seconds Memory access time tm seconds If page is in TLB (Hit) Memory

access time = (ts + tm) If page is not in TLB (miss) Memory access time=(ts + 2tm) (tm to read page from memory ts to

read data) Effective access time= (ts + tm)h + (ts + 2tm)(1-h)

10.5 Structure of Page Table The basic mechanism for reading a word from memory involves the translation by using a

page table of a virtual, or logical, address that consists of page number and offset, into a physical address that consists of

a frame number and offset. Because the page table is of variable length, depending on the size of the process, it cannot

be stored in registers. Instead, it must be in main memory to be accessed. Figure 10.6 suggests a hardware

implementation of this scheme. When a particular process is running, a register holds the starting address of the page

table for that process. The page number of a virtual address is used to index that table loop up the corresponding frame

number. This is combined with the offset portion of the virtual address to produce the desired real address. Let us

consider the number of page table entries required. In most systems, there is one page table per process. The entire page

table may take up too much main memory. So Page tables are also stored in virtual memory. When a process is running,

part of its page table is in main memory.

82 of 210 5/3/2023, 10:31 AM

An alternative approach is the use of an Inverted Page Table structure. In this approach, the page number portion of a

virtual address is mapped into a hash table by using a simple hashing function. The hash table contains a pointer to the

inverted page table, which contains the page table entries. With this structure, there is one entry in the hash table and

inverted page table for each real memory rather than for one per virtual page. Thus, a fixed proportion of real memory is

required for the tables regardless of the number of processes or virtual pages. Since more than one virtual address may

map into the same hash table entry, a chaining technique is used for managing overflow. Figure 10.6: Address Translation

in a Paging System Page Size An important hardware design is the size of page to be used. Several factors to be included

• Small page size, less amount of internal fragmentation • Small page size, more pages required per process • More pages

per process means larger page tables • Larger page tables means large portion of page tables in virtual memory. •

Secondary memory is designed to efficiently transfer large blocks of data so a large page size is better. Based on the

principle of locality • Small page size, large number of pages will be found in main memory. • As time goes on during

execution, the pages in memory will all contain portions of the process near recent references. Page faults low. •

Increased page size causes pages to contain locations further from any recent reference. Page faults rise.

10.6

Hierarchical Paging

Modern computer systems support a large logical address space (232 to 264).

In such an environment,

81% MATCHING BLOCK 207/301

the page table itself becomes excessively large. For example, consider a system with a 32-bit logical address space. If

the page size in such system is 4 KB (212), then a page table may consist of up to 1 million entries (232/212).

Assuming that each entry consists of 4 bytes, each process may need up to 4 NIB of physical address space for the page

table alone.

Clearly, we would not want to allocate the page table contiguously in main

85% MATCHING BLOCK 211/301 OS_SLM_Revised.pdf (D155071872)

memory. One simple solution to this problem is to divide the page table into

smaller pieces. We can accomplish this division in several ways.

Figure 10.7: A two level

page table scheme

One way is to use a two-level paging algorithm, in which the page table itself is also paged

Remember our example of a 32-bit machine with

100% MATCHING BLOCK 209/301

a page size of 4 KB. A logical address is divided into a page number consisting of 20 bits and a page offset consisting of

12 bits. Because we page the page table, the page number is further divided into a

la-

100% MATCHING BLOCK 210/301

bit page number and a 10-bit page offset. Thus, a logical address is as follows:

Page number Page offset

P1

83 of 210 5/3/2023, 10:31 AM

P2 P3 10 10 12

Figure 10.8: Two Level

Page Structure

100% MATCHING BLOCK 223/301 OS_Notes_Full.pdf (D108987417)

where P1 is an index into the outer page table and P2 is the displacement within the page of the outer page table.

95% MATCHING BLOCK 212/301

the displacement within the page of the outer page table. The address-translation method for this architecture is

shown in Figure 10.8 Because address translation works from the outer page table inward, this scheme is also known as

a forward-mapped page table.

Figure 10.9: Address Translation for a two level 32 bit paging architecture

10.7

Hashed Paging

A common approach for handling address

100% MATCHING BLOCK 213/301

spaces larger than 32 bits is to use a hashed page table, with the hash value being the virtual page number.

Each entry in the

hash table contains a linked list of elements that hash to the same location (

80% MATCHING BLOCK 214/301

to handle collisions). Each element consists of three fields: (1) the virtual page number, (2) the value of the mapped

page frame, and (3) a pointer to the next element in the linked list.

73% MATCHING BLOCK 215/301

value of the mapped page frame, and (3) a pointer to the next element in the linked list.

The algorithm works as follows:

90% MATCHING BLOCK 216/301

The virtual page number in the virtual address is hashed into the hash table. The virtual page number is compared with

field 1 in the first element in the linked list. If there is a match, the corresponding page frame (field 2) is used to form the

desired physical address. If there is no match, subsequent entries in the linked list are searched for a matching virtual

page number.

84 of 210 5/3/2023, 10:31 AM

90% MATCHING BLOCK 217/301

The virtual page number in the virtual address is hashed into the hash table. The virtual page number is compared with

field 1 in the first element in the linked list. If there is a match, the corresponding page frame (field 2) is used to form the

desired physical address. If there is no match, subsequent entries in the linked list are searched for a matching virtual

page number.

This scheme is

shown in Figure 8.16.

A variation of this scheme that is favorable for 64-bit address spaces has been proposed.

This variation 1

JSeS clustered page tables,

which are

91% MATCHING BLOCK 218/301

similar to hashed page tables except that each entry in the hash table refers to several pages (

91% MATCHING BLOCK 219/301

similar to hashed page tables except that each entry in the hash table refers to several pages (

such as 16) rather than a single page.

Therefore, a single page-table entry can store the mappings for multiple physical-page frames.

Clustered page tables are particularly useful for

sparse

address spaces, where memory references are noncontiguous and scattered throughout the address space.

Figure 10.10: Hashed

page table

10.8

Inverted Page Tables Usually, each process has an associated page table.

The page table has one entry for each page that the process is using (or one slot for each virtual address, regardless of

the latter's validity).

This table representation is a natural one, since processes reference pages through the pages' virtual addresses. The

operating system must then translate this reference into a physical memory address.

Since the table is sorted by virtual address, the operating system is able to calculate where in the table the associated

physical address entry is and to use that value directly.

One of the drawbacks of this method is that each page table may consist of millions of entries.

These tables may consume large amounts of physical memory just to keep track of how other physical memory is being

used.

To solve this problem, we can use an inverted page table.

An

100% MATCHING BLOCK 220/301

inverted page table has one entry for each real page (

or

85 of 210 5/3/2023, 10:31 AM

95% MATCHING BLOCK 221/301

frame) of memory. Each entry consists of the virtual address of the page stored in that real memory location; with

information about the process that owns that page. Thus, only one page table is in the system,

95% MATCHING BLOCK 222/301

frame) of memory. Each entry consists of the virtual address of the page stored in that real memory location; with

information about the process that owns that page. Thus, only one page table is in the system,

and it has only one entry for each page of physical memory.

Below figure the operation of an inverted page table. Compare it with Figure, which depicts a standard page table in

operation.

Inverted page tables often require that an address-space identifier be stored in each entry of the page table, since the

table usually contains several different address spaces mapping physical memory.

Storing the address-space identifier ensures that a logical page for a particular process is mapped to the corresponding

physical page frame.

Figure 10.11: Inverted page table architecture

10.9 Summary One of the most important, and most complex, tasks of an operating system is Memory Management.

Memory management involves treating of main memory as a resource to be allocated to and shared among a number of

active processes. To efficiently use the processor and the I/O facilities, it is desirable to maintain as many processes in

main memory as possible. In addition, it is desirable to free programmers from size restrictions in program development.

The way to address both of these concerns is to use Virtual Memory. With Virtual memory all address references are

logical references that are translated at run time to real address. This use allows a process to be allocated anywhere in

main memory and for that location to change over time.

60% MATCHING BLOCK 224/301 OS_Notes_Full.pdf (D108987417)

Virtual memory also allows a process to be broken up into pieces. These pieces need not be contiguously located in

main memory during execution,

80% MATCHING BLOCK 225/301 Operating System.pdf (D30089487)

a process to be broken up into pieces. These pieces need not be contiguously located in main memory during

execution,

and indeed all pieces of the process need not be in main memory. Two basic approaches to provide virtual memory are

Paging and Segmentation. With Paging, each process is divided into relatively small, fixed-size pages. Segmentation

provides for the use of pieces of varying size. It is also possible to combine segmentation and paging in a single memory

management scheme.

Self Assessment Question 1. Define Memory Management. 2. List the requirements of memory management. 3. State the

advantages of logical organization. 4. Define Overlaying. 5. What do you mean by Virtual memory? 6. Differentiate

Internal fragmentation and External fragmentation. 7. State the technique used to overcome external fragmentation. 8.

Bring out the difference between First fit, Best fit and Next fit. 9. Differentiate Logical address and Physical address. 10.

Define: pages and frames. 11. State the advantages and disadvantages of Paging. 12. Define Segmentation. 13. Write

down the steps for address translation in segmentation.

Unit 11: Virtual Memory Management

11.1

Objective •

86 of 210 5/3/2023, 10:31 AM

To describe the benefits of a virtual memory system • To explain

100% MATCHING BLOCK 229/301 OS_SLM_Revised.pdf (D155071872)

the concepts of demand paging, page-replacement algorithms, and allocation of page frames •

To discuss the principle of the working-set model

11.2

Introduction As we know that a computer is designed for performing the multiple tasks at a time and for this some

memory is also used by the computer for executing the instructions those are given by the user. But when there is a

situation when the memory which is required by the user is high from the available memory. So that the Logical Memory

will be treat as the Permanent Memory or from the Physical Memory and when we wants to display the size of Logical

Memory big enough which is not actually exists. So at that situation we will use the concept of Virtual Memory. In virtual

memory, the physical memory is treated as the logical memory. Thus with the help of virtual memory we can increase

the size of logical memory as from the physical memory. A user will see or feels that all the programs are running into the

Logical Memory of the computer. With the help of virtual memory all the space of hard disk can be used as the Logical

Memory So that a user can execute any number of programs.

The various benefits of the virtual Memory are :- 1. Unused Address space: With the help of unused address space a user

can execute any number of programs because all the actual addresses will be treated as the logical addresses. All the

programs those are given by the user will be stored into the disk space and all the programs will be stored into the

physical address space but they will treat as they are stored into the logical address space. 2. Increased degree of

multiprogramming: With the help of virtual memory we can execute many programs at a time because many programs

can be fit in the physical memory so that more programs can be stored into the memory but this will not increase the

response time of the CPU means this will not affect the execution of the programs. 3. Decrease Number of I/O

Operations: There will be less operations those are to be used for performing the swapping of the processes. All the

programs will be automatically loaded into the memory when they are needed.

But always remember that the whole programs are never to be copied into the memory, it means all the programs are

copied in form of pages or parts.

11.3 Pre-Paging and Demand Paging When we execute a

program it might be loaded from disk into memory.

One option is to load the entire program in physical memory at

the time of

execution. However, a problem with this approach is that we may not initially need

the entire program in memory. Consider a program

that

starts with a list of available options from which the user is to select.

Loading the entire program into memory results in loading the executable code for all options, regardless of whether an

option is ultimately selected by

the user

or not. An alternative strategy is to initially

load pages only as they are needed.

This technique is known as

demand

paging and is commonly used in virtual memory systems.

With demand-paged virtual memory,

pages are only loaded when they are demanded during program execution, pages that are

never accessed are thus never loaded into physical memory.

87 of 210 5/3/2023, 10:31 AM

100% MATCHING BLOCK 226/301

When we want to execute a process, we swap it into memory. Rather than swapping the entire process into memory,

however, we use a lazy swapper.

A

lazy swapper never swaps a page into memory unless that page will be needed.

Figure 11.1: Transfer of a

paged memory to contiguous disk space

Demand paging

Concepts

When a process is

to be swapped in, the pager guesses which

pages

is

71% MATCHING BLOCK 227/301

be used before the process is swapped out again. Instead of swapping in the whole process, the pager brings only

necessary pages into memory. Thus it avoids reading into memory pages that will not be used any way, decreasing the

swap time and the amount of physical memory needed.

With this scheme, we need some form of hardware support to distinguish between

the

pages that are in memory and the

pages that are on the disk.

The valid -invalid bit scheme

can be used for this purpose.

100% MATCHING BLOCK 228/301

When this bit is set to "valid", the associated page is

both legal and in memory.

If the bit is set to "

invalid", the page either is not valid

or is

valid but is currently on the disk.

The page-table entry for a page that is brought into memory is set as usual but the page-table entry for a page

that is not currently in memory is

either

simply marked invalid or contains the address of the page

on disk.

This situation is shown in figure 11.1

Marking a page invalid

will have no effect if the process never attempts to access

that page.

Hence, if we guess right and page in all and only those pages that are actually needed, the process will run exactly as

though we had brought in all

pages.

88 of 210 5/3/2023, 10:31 AM

While the process executes and accesses pages that are

memory resident, execution proceeds normally.

100% MATCHING BLOCK 230/301 OS_SLM_Revised.pdf (D155071872)

Figure 11.2: Page table when some pages are not in main memory

100% MATCHING BLOCK 231/301 COOS.docx (D142533740)

Figure 11.2: Page table when some pages are not in main memory

Figure 11.3: Steps in handling a page fault

11.3 Copy-on-write Copy-on-write is

a technique which works by allowing the parent and child processes initially to share the same pages.

These shared pages are marked as copy-an-write pages, meaning that if either process writes to a shared page, a copy of

the shared page is created.

Copy-on-write is shown in below figures 11.4 , which show the contents of the physical memory before and after

process 1 modifies page C.

Figure 11.4(a) Before process 1modifies page C (b)

after process1modifies page C

When

child process attempts to modify a page containing portions of the stack, with the pages set to be copy-an-write. The

operating system will then

create a copy of this page, mapping it to the address space of the child process.

The child process will then modify its copied page and not the page belonging to the parent process.

When the copy-on-write technique is used, only the pages that are modified by either process are copied, all unmodified

pages can be shared by the parent and child processes.

Only pages that can be modified need be marked as copy-on-write.

Pages that cannot be modified can be shared by the parent and child.

Copy-on-write is a technique used by several operating systems including windows XP, Linux, and Solaris.

Operating systems

typically allocate these pages using a technique known as zero-fill-on-demand.

Zero- fill-on-demand pages have been zeroed-out before being allocated, thus erasing the previous contents.

11.4

Page Replacement Basics Consider a situation where a user process is under execution and

a page fault occurs.

The operating system determines where the desired page is residing on the disk but then finds

that

there are no free frames on the free-frame list; all memory is in use.

The operating system has several options at this point.

It could terminate the user process.

However, demand paging is the operating system's attempt to improve the computer system's utilization and

throughput.

84% MATCHING BLOCK 237/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

Page replacement takes the following approach. If no frame is free, we find one that is currently not being used and

free it.

We

89 of 210 5/3/2023, 10:31 AM

can

92% MATCHING BLOCK 232/301

free a frame by writing its contents to swap space and changing the page table to indicate that the page is no longer in

memory.

We can now use

the

freed frame to hold the page for which the

process

fault occurred. 1.

95% MATCHING BLOCK 233/301

Find the location of the desired page on the disk. 2. Find a free frame: a. If there is a free frame, use it. b. If there is no

free frame, use a page-replacement algorithm to select a victim frame. c. Write the Victorian frame to the disk; change

the page and frame tables accordingly. 3. Read the desired page into the newly freed frame; change the page and

frame tables. 4. Restart the user process.

Page replacement is basic to demand paging. It completes the separation between logical memory and physical

memory.

With this mechanism an enormous virtual memory can be provided for programmers on a smaller physical memory.

With no demand paging, user addresses are mapped into physical addresses, so the two sets of addresses can be

different.

All the pages of a process still must be in physical memory, however.

With demand paging, the size of the logical address space is no longer constrained by physical memory.

There are many different page-replacement algorithms. Every operating system

probably has its own replacement scheme.

How do we select a particular replacement algorithm?

In general, we want the one with the lowest page-fault rate.

11.5

Page Replacement Policies A reference to a page, not present in main memory, is called page fault. When page fault

occurs, it is necessary for OS to read in the required page from the secondary memory. Removing the page randomly will

not be a good idea hence we need to have

page replacement algorithm. Page replacement algorithms decide what pages to page out (

swap out)

when a page needs to be allocated.

This happens when

a page fault occurs

and a free page cannot be used

to satisfy the allocation, either because there are none,

or because

the number of free pages is lower than some threshold.

When the page that was selected for replacement and paged out is referenced again it has to be paged in, and this

usually involves waiting for I/O completion. This determines the quality of the page replacement algorithm: the less time

wasted by waiting for page-ins, the better the algorithm.

A page replacement algorithm

tries, by looking at the limited information about

accesses to the pages provided by hardware, to guess what pages should be replaced in order

to minimize the total number of page misses, while balancing

90 of 210 5/3/2023, 10:31 AM

this

with the costs (primary storage and processor time) of the algorithm itself. There are various page replacement

algorithms

available.

Some of the very important and common algorithms are discussed: 1. FIFO: The first in first out page replacement

algorithm selects the page that has been in memory the longest .To implement this algorithm page table entries must

include a field for the swap in time. When a page is swapped in the OS loads the field with current time. The page

selected for replacement will be the one with the earliest swap in time. Although easy to implement and inexpensive

FIFO is not very efficient. Frequently used pages even though they are in memory should not be swapped out. FIFO

doesn't consider the amount they have been used and swaps them out anyway. Example:

Figure 11.5 FIFO Page - replacement algorithm 2. LRU: The least recently used algorithm keep tracks of the last time each

page was used not when it was swapped in. The memory management hardware uses a counter which is incremented

during each memory reference. Each page table entry has a field that stores a value of this counter. When a page is

referenced the value of the counter is updates in the page table entry for that page.

LRU

replacement associates with each page the time of that page's last

used. When a page must be replaced

LRU chooses

that

page which

has not been used for the longest period of time.

This strategy is

the

optimal page replacement algorithm looking backward in time rather than forward.

Figure 11.6 3. Second chance page replacement

algorithm: The basic algorithm of second chance replacement is a FIFO replacement algorithm.

When page has been selected, we inspect its reference bits. If the value is 0, we proceed to replace this page

and

the reference bit is set to 1, however we give that page a second chance and move on to select

91% MATCHING BLOCK 234/301

the next FIFO page. When a page gets a second chance its referenced bit is cleared and

its arrival time is reset to the current time.

Thus, a page that is given

96% MATCHING BLOCK 235/301

a second chance will not be replaced until all other pages are replaced.

In addition if a page is used often enough to keep its reference bit set, it will never be replaced.

Figure 11.7: Second chance page replacement algorithm

11.6

Thrashing cause

If the number of frames allocated to a low-priority process falls below the minimum number required

by the computer architecture,

we must

suspend that process'

s

execution.

91 of 210 5/3/2023, 10:31 AM

We should then page out its remaining pages, freeing all its allocated frames.

This provision introduces a swap-in, swap-out level of intermediate CPU scheduling.

In fact, look at any process that does not have "enough" frames.

If the process does not have the number of frames it needs to support pages in active use,

100% MATCHING BLOCK 236/301

it will quickly page-fault. At this point, it must replace some page. However, since all its pages are in active use, it must

replace a page that will be needed again right away. Consequently, it quickly faults again, and again, and again,

replacing pages that it must bring back in immediately.

This

high paging activity is called

thrashing.

A process is thrashing if it is spending more time paging than executing.

11.6.1

Cause of Thrashing Thrashing results in severe performance problems.

Consider the following scenario, which is based on the actual behavior of early paging systems.

The operating system monitors CPU utilization.

If CPU utilization is too low, we increase the degree of multiprogramming by introducing a new

process to

the system.

A global page-replacement algorithm is used; it replaces pages without regard to the

process to which they belong. Now suppose that a process enters a new phase in its execution and needs more frames.

It starts faulting and taking frames away from other processes.

These processes need those pages, however, and so they also fault, taking frames from other processes.

These faulting processes must use the paging device to swap pages in and out.

As they queue up for the paging device, the ready queue empties.

As processes wait

for the paging device, CPU utilization decreases. The CPU scheduler sees the decreasing CPU utilization and increases

the degree of multiprogramming as a result.

The new process tries to get started by taking frames from running processes, causing more page faults and a longer

queue for the paging device.

As a result, CPU utilization drops even further, and the CPU scheduler tries to increase the degree of multiprogramming

even more.

Thrashing has occurred, and system throughput plunges. The page fault

rate increases tremendously. As a result, the effective memory-access time increases.

No work is getting done, because the processes are spending all their tilrle paging.

Figure 11.8

This phenomenon is illustrated in Figure 11.8,

in which CPU utilization is plotted against the degree of multiprogramming.

As the degree of multiprogramming increases, CPU utilization also increases, although more

96% MATCHING BLOCK 240/301 OS_SLM_Revised.pdf (D155071872)

slowly, until a maximum is reached. If the degree of multiprogramming is increased

even further, thrashing sets in, and CPU utilization drops sharply.

At this point, to increase CPU utilization and stop thrashing, we must decrease the degree of

multiprogramming. We can limit the effects of thrashing by using a local replacement

algorithm (or priority

92 of 210 5/3/2023, 10:31 AM

84% MATCHING BLOCK 238/301

replacement algorithm). With local replacement, if one process starts thrashing, it cannot steal frames from another

process and cause the latter to thrash as well. However, the problem is not entirely solved.

84% MATCHING BLOCK 239/301

replacement algorithm). With local replacement, if one process starts thrashing, it cannot steal frames from another

process and cause the latter to thrash as well. However, the problem is not entirely solved.

If processes are thrashing, they will be in the queue for the paging device HlOSt of the time. The average service time for

a

page fault will increase because of the longer average

queue for the paging device. Thus, the effective access time will increase even for a process that is not thrashing.

To prevent

thrashing,

we must provide a process with as many frames as it needs.

But how do we know how many frames it "needs"? There are several techniques.

The working-set strategy starts by looking at how

many

frames a process is actually using. This approach defines the locality

model

of process execution.

The locality model states that, as a process executes, it moves from locality to locality.

A locality is

a set of pages that are actively used together.

A program is generally composed of several different localities, which may overlap.

For example, when a function is called, it defines a new locality.

In this locality, memory references are made to the instructions of the function call, its local variables, and a subset of the

global variables.

When we exit the function, the process leaves this locality, since the local variables and instructions of the function are

no longer in active use. We may return to this locality later. Thus, we see that localities are defined by the program

structure and its data structures.

The locality model states that all programs will exhibit this basic memory reference structure.

Note that the locality model is the unstated principle behind the caching discussions so far in this book.

If accesses to any types of data were random rather than patterned, caching would be useless.

11.7

Summary •

Virtual memory is commonly implemented by demand paging.

Pure demand paging never brings in a page until that page is referenced. The

first reference causes a page fault to the operating system.

The operating-system kernel consults an internal table to determine where the page is located on the backing store.

It then finds a free frame and reads

the page in from the backing store. • The page table is updated to reflect this change, and the instruction that caused the

page fault is restarted.

This approach allows a process to run even tll0ugh its entire memory image is not in main memory at once.

As long as the page-fault rate is reasonably low, performance is acceptable. •

We can use demand paging to reduce the number of frames allocated to a process.

This arrangement can increase the degree of multiprogramming (allowing more processes to be available for execution

at one time) and -in theory, at least-the CPU utilization of the system.

93 of 210 5/3/2023, 10:31 AM

It also allows processes to be run even though their memory requirements exceed the total available physical memory.

Such processes run in virtual memory. •

If total memory requirements exceed the physical memory, then it may be necessary to replace pages from memory to

free frames for new pages. Various page-replacement

algorithms are used. Optimal page

replacement requires future knowledge.

LRU replacement is an approximation of optimal page replacement, but even it may be difficult to implement.

Most page-replacement algorithms, such as the second-chance algorithm, are approximations of LRU replacement. •

Most operating systems provide features for memory mapping files, thus allowing file

I/O

to be treated as routine memory access.

The Win32 API implements shared memory through memory

mapping files.

Self-Assessment Questions 1. What do you mean by virtual memory? 2. What is demand paging 3. What is page table,

how you will determine size of a page 4. What is Thrashing. 5. Write any two-page replacement policies

Unit 12: File Management System

12.1

Objective •

To explain the function of file systems. • To

82% MATCHING BLOCK 241/301 COOS.docx (D142533740)

describe the interfaces to file systems. • To discuss file-system design tradeoffs, including access methods, file sharing,

82% MATCHING BLOCK 242/301 COOS.docx (D142535190)

describe the interfaces to file systems. • To discuss file-system design tradeoffs, including access methods, file sharing,

file locking, and directory structures. •

To

explore file-system protection.

12.2

Introduction

99% MATCHING BLOCK 247/301
120E1250, 137E1250, 170E2340-Operating System.doc

(D165245592)

File system is the most visible aspect of an operating system. It provides the mechanism for on-line storage of and

access to both data and programs of the operating system and all users of the computer system. The file system

consists of two distinct parts: a collection of files, each storing related data, and a directory structure, which organizes

and provides information about all the files in the system.

Computers can store information

on various storage media, such as magnetic disks, magnetic tapes,

and optical disks.

So that the computer system will be convenient to use,

the

operating system provides a uniform

logical view

of information

storage.

94 of 210 5/3/2023, 10:31 AM

The

operating system

abstracts from the physical properties of its storage devices to define a logical storage unit,

the, file.

Files are mapped by the operating system onto physical devices.

These storage devices are usually nonvolatile, so the contents are persistent

through power failures and system reboots. 12.3

File

Attribute Each file is stored in a directory and uses a directory entry that describes its characteristics such as its name and

size. The directory entry also contains a pointer to where the file is stored on disk. One of the characteristics stored for

each file is a set of file attributes that give the operating system and application software more information about the file

and how it is intended to be used. Any software program can look in the directory entry to determine the attributes of a

file, and based on them, make decisions about how to treat the file. A file can have more than one attribute attached to it

they may be

100% MATCHING BLOCK 243/301

vary from one operating system to another but typically consist of these:

100% MATCHING BLOCK 244/301

vary from one operating system to another but typically consist of these:

A file can have following

100% MATCHING BLOCK 245/301

attributes. • NAME: The symbolic file name is the only information kept in human readable form. • Identifier: This

100% MATCHING BLOCK 246/301

attributes. • NAME: The symbolic file name is the only information kept in human readable form. • Identifier: This

is

95 of 210 5/3/2023, 10:31 AM

a number or tag which is used to identified the file with in the file system. • Type: this information is needed for system to

support different types of file. • Size: The size of file in bytes. • Read-Only: Most software, when seeing a file marked

read-only, will refuse to delete or modify it. This is pretty straight-forward. For example, DOS will say "Access denied" if

you try to delete a read-only file. On the other hand, Windows Explorer will happily munch it. Some will choose the

middle ground: they will let you modify or delete the file, but only after asking for confirmation. • Hidden: if the file is

marked hidden then under normal circumstances it is hidden from view. DOS will not display the file when you type "DIR"

unless a special flag is used, as shown in the earlier example. • System: This flag is used to tag important files that are

used by the system and should not be altered or removed from the disk. In essence, this is like a "more serious" read-only

flag and is for the most part treated in this manner. • Volume Label: Every disk volume can be assigned an identifying

label, either when it is formatted, or later through various tools such as the DOS command "LABEL". The volume label is

stored in the root directory as a file entry with the label attribute set. • Directory: This is the bit that differentiates between

entries that describe files and those that describe subdirectories within the current directory. In theory you can convert a

file to a directory by changing this bit. of course in practice, trying to do this would result in a mess--the entry for a

directory has to be in a specific format. • Archive: This is a special bit that is used as a "communications link" between

software applications that modify files, and those that are used for backup. Most backup software allows the user to do

an incremental backup, which only selects for backup any files that have changed since the last backup. This bit is used

for this purpose. When the backup software backs up ("archives") the file, it clears the archive bit (makes it zero). Any

software that modifies the file subsequently, is supposed to set the archive bit. Then, the next time that the backup

software is run, it knows by looking at the archive bits which files have been modified, and therefore which need to be

backed up. Again, this use of the bit is "voluntary"; the backup software relies on other software to use the archive bit

properly; some programs could modify the file without setting the archive attribute, but fortunately most software is

"well-behaved" and uses the bit properly. Still, you should not rely on this mechanism absolutely to ensure that your

critical files are backed up.

12.4 File Operations We can perform various operation on a file. a operation system have various system call to create,

write, read, move, delete a

file. •

Creating a file. Two steps are necessary to create

96% MATCHING BLOCK 248/301

a file. Space in the file system must be found for the file. An entry for the new file must be made in the directory. •

Writing a file.

55% MATCHING BLOCK 249/301 OS_Notes_Full.pdf (D108987417)

must be found for the file. An entry for the new file must be made in the directory. •

To write

a file, we make

a system call specifying both

the

name of the file and

the information to be written to

the file.

The

system must keep a write pointer to the location in the file where the next write is to take place.

The write pointer must be updated whenever a write occurs. •

Reading a file.

To read from

a file, we

96 of 210 5/3/2023, 10:31 AM

use

a system call that specifies the name of the file and

where (in memory) the next block of

the

file should be put.

The

system needs to keep a read pointer to the location in the file where the next read is to take place.

Because a process is usually either reading from or writing to a file, the current operation location can be kept as a per-

process

current-file-position pointer.

Both the read and write operations use this same pointer, saving space and reducing system complexity. •

Repositioning within

a file.

The directory is searched for the appropriate entry, and

the current-file- position pointer is repositioned to

a given value.

Repositioning within a file

need not involve any actual I/O. This file operation is also known as

a

file seek. •

Deleting

a file.

To delete

a file, we search the directory

for

the named file.

Having found the associated directory entry,

we release all file space,

so that

it can be reused by other files, and erase the directory entry. •

Truncating a file. The user may want to erase the contents of a file but keep its attributes.

Rather than forcing the user to delete the file and then recreate it,

this function allows all attributes to remain unchanged (except for file length) but lets the

file

be reset to length zero and its file space released.

12.5

File Types

The types of files recognized by the system are either regular, directory, or special. However, the operating system uses

many variations of these basic types. The following basic types of files exist: regular Stores data (text, binary, and

executable) directory Contains information used to access other files special Defines a FIFO (first-in, first-out) pipe file or

a physical device

97 of 210 5/3/2023, 10:31 AM

All file types recognized by the system fall into one of these categories. However, the operating system uses many

variations of these basic types. • Regular files Regular files are the most common files and are used to contain data.

Regular files are in the form of text files or binary files. • Text files Text files are regular files that contain information stored

in ASCII format text and are readable by the user. You can display and print these files. The lines of a text file must not

contain NULL characters, and none can exceed {LINE_MAX} bytes in length, including the newline character. The term

text file does not prevent the inclusion of control or other nonprintable characters (other than NULL). Therefore,

standard utilities that list text files as inputs or outputs are either able to process the special characters or they explicitly

describe their limitations within their individual sections. • Binary files Binary files are regular files that contain information

readable by the computer. Binary files might be executable files that instruct the system to accomplish a job. Commands

and programs are stored in executable, binary files. Special compiling programs translate ASCII text into binary code. Text

and binary files differ only in that text files have lines of less than {LINE_MAX} bytes, with no NULL characters, each

terminated by a newline character. • Directory files Directory files contain information that the system needs to access all

types of files, but directory files do not contain the actual file data. As a result, directories occupy less space than a

regular file and give the file system structure flexibility and depth. Each directory entry represents either a file or a

subdirectory with reference to Unix each entry contains the name of the file and the file's index node reference number

(i-node number). The i-node number points to the unique index node assigned to the file. The i-node number describes

the location of the data associated with the file. Directories are created and controlled by a separate set of commands. •

Special files Special files define devices for the system or are temporary files created by processes. The basic types of

special files are FIFO (first-in, first-out), block, and character. FIFO files are also called pipes. Pipes are created by one

process to temporarily allow communication with another process. These files cease to exist when the first process

finishes. Block and character files define devices. Every file has a set of permissions (called access modes) that

determines who can read, modify, or execute the file.

12.6

File

Structure File types also can be used to indicate the internal structure

of

file.

The operating system

support multiple file structures: The resulting size of the operating system is large.

If the operating system defines five

different file structures, it needs to contain the code to support these file structures.

Every file may need to be define

as one of the file types supported by the operating system.

When new applications require information structured in ways not supported by the operating system,

severe problems may

occur.

Some operating systems require a minimal number of file structures. This approach has been adopted in UNIX, MS-DOS,

and others.

UNIX considers each file to be a sequence of 8-bit bytes; no interpretation of these bits is made by the operating system.

This scheme provides maximum flexibility but little support.

Each application program must include its own code to interpret an input file

as to

the appropriate structure.

However, all operating systems

must support at least one structure that of an executable file so

that the system is able to load and run programs. 12.7

Internal File Structure

Files can be structured in any of several ways. Three common possibilities are Stream of Bytes, Records, Tree of Records.

Stream of Bytes. The

file is an unstructured sequence of bytes. In effect, the operating system does not know or care what is in the file. All it

sees are bytes. Both UNIX and Windows use this approach.

98 of 210 5/3/2023, 10:31 AM

Records. The first step up in structure is a

file is a sequence of fixed-length records, each with some internal structure.

Tree of Records.

The third kind of file structure organization, a file consists of a tree of records, not necessarily all the same length, each

containing a key field in a fixed position in the record.

Internally, locating an offset within a file can be complicated for the

OS. Disk systems typically have a well-defined block size determined by the size of a sector.

All disk I/O is performed in units of one block (physical record), and all blocks are the same size.

It is unlikely that the physical record size will exactly match the length of the desired logical record. Packing a number of

logical records into physical blocks is a common solution to this problem.

For example, the

UNIX OS defines all files to be simply streams of bytes.

Each byte is individually addressable by its offset from the beginning (or end) of the file.

In this case, the logical record size is 1 byte. The

file system automatically packs and unpacks bytes into physical disk blocks -say, 512 bytes per block-

as necessary.

The

file may be considered to

be a sequence of blocks. All the

basic I/O functions operate in terms of blocks.

Because disk space is always allocated in blocks, some portion of the last block of each file is generally wasted.

If each block were 512 bytes,

for example,

then

a file of 1,949 bytes would be allocated four blocks (2,048 bytes); the last 99 bytes

would be wasted.

The waste incurred to keep everything in units of blocks (instead of bytes)

is

internal fragmentation.

All file systems suffer from internal fragmentation; the larger the block size, the greater the internal fragmentation.

12.8

Accessing Method

Information is kept in files. Files reside on secondary storage. When this information is to be used, it has to be accessed

and brought into primary main memory. Information in files could be accessed in many ways. It is usually dependent on

an application.

Sequential Access: A

simple access method, information in a file is accessed sequentially one record after, another.

To process the next record records previous to it must be accessed.

Sequential access is based on the tape model that is inherently a sequential access device. Sequential access is best

suited where most of the records in a file are to be processed.

For example, transaction files.

Direct Access: Sometimes it is not necessary to process every record in a file. It may not be necessary to process records

in the order in which they are present. Information present in a record of a file is to be accessed only if some key value in

that record is known. In all such cases, direct access is used. Direct access is based on the disk that is a direct access

device and allows random access of any file block. Since a file is a collection of physical blocks, any block and hence the

records in that block are accessed. For example, master files. Databases are often of this type since they allow query

processing that involves immediate access to large amounts of information. All reservation systems fall into this category.

Not all operating systems support direct access files. Usually, files are to be defined as sequential or direct at the time of

creation and accessed accordingly later. Sequential access of a direct access file is possible but direct access of a

sequential file is not.

99 of 210 5/3/2023, 10:31 AM

Indexed Sequential Access: This access method is a slight modification of the direct access method. It is in fact a

combination of both the sequential access as well as direct access. The main concept is to access a file direct first and

then sequentially from that point onwards. This access method involves maintaining an index. The index is a pointer to a

block. To access a record in a file, a direct access of the index is made. The information obtained from this access is used

to access the file. For example, the direct access to a file will give the block address and within the block the record is

accessed sequentially. Sometimes indexes may be big. So hierarchies of indexes are built in which one direct access of

an index leads to info to access another index directly and so on till the actual file is accessed sequentially for the

particular record. The main advantage in this type of access is that both direct and sequential access of files is possible.

12.9

Directory Structure File systems typically have directories (sometimes called folders) which allow the user to group files.

This may be implemented by connecting the file name to an index in a table of contents or an inode in a Unix-like file

system. Directory structures may be flat (i.e. linear), or allow hierarchies where directories may contain subdirectories.

The first file system to support arbitrary hierarchies of directories was the file system in the UNIX operating system. The

native file systems of Unix-like systems also support arbitrary directory hierarchies, as do, for example, the FAT file system

in MS-DOS 2.0 and later and Microsoft Windows, the NTFS file system in the Windows NT family of operating systems.

12.10 File Access and Access Control Many operating systems, including Unix, are multiuser. As such, it is necessary to

have mechanisms which protect a user's file from unwanted access. An integral part of an access control mechanism in a

multiuser operating system is the concept of user ownership of a file and, very often, the concept of group ownership.

However, many operating systems, such as those for personal computers, are single-user operating systems. In a single-

user environment, there is no need for file access mechanisms which protect files from unwanted access by others

because, conceptually, there is only one user. Nonetheless, some single-user operating systems permit a file to be

marked as read-only to protect the file from inadvertent modification or removal. Both single-user and multiuser

operating systems have been used as servers providing transparent file access. Most multiuser operating systems are

already well suited for use as a file server since access protection is already an integral part of its design. For a single-user

operating system, it is necessary that some sort of access control mechanism be implemented when such an operating

system is used to provide file service. This is usually accomplished by creating a separate partition for each user's files.

Thus, user identification is not associated with an individual file but with a partition on the server's disk. File servers which

have single-user operating systems may also have partitions that are accessible by anyone. Network environments

include both servers based on multiuser operating systems and servers based on single-user operating systems.

Application programs on clients may have transparent access to servers which are based on single-user operating

systems which may neither provide owner information nor group ownership information for a file but are capable of

imposing some level of file access control. That file access control may be no more than a read/write permission that

applies to any user. Avery large group of applications are able to function in such an environment.

12.11

Summary

95% MATCHING BLOCK 250/301 COOS.docx (D142533740)

A file is an abstract data type defined and implemented by the operating system. It is a sequence of logical records. A

logical record may be a byte, a line, or a more complex data item. The operating system may specifically support

various record types or may leave that support to the application program.

The

92% MATCHING BLOCK 251/301 COOS.docx (D142533740)

major task for the operating system is to map the logical file concept onto physical storage devices such as magnetic

tape or disk. Since the physical record size of the device may not be the same as the logical record size, it may be

necessary to order logical records into physical records. Again, this task may be supported by the operating system or

left for the application program.

100 of 210 5/3/2023, 10:31 AM

Each device in a file system keeps a volume table of contents or device directory listing the location of the files on the

device.

In addition, it

is useful to create directories to allow files to be organized.

100% MATCHING BLOCK 252/301 COOS.docx (D142533740)

A tree-structured directory allows a user to create subdirectories to organize files. Acyclic-graph directory structures

enable users to share subdirectories and files but complicate searching and deletion. A general graph structure allows

complete flexibility in the sharing of files and directories but sometimes requires garbage collection to recover unused

disk space.

100% MATCHING BLOCK 253/301 COOS.docx (D142535190)

A tree-structured directory allows a user to create subdirectories to organize files. Acyclic-graph directory structures

enable users to share subdirectories and files but complicate searching and deletion. A general graph structure allows

complete flexibility in the sharing of files and directories but sometimes requires garbage collection to recover unused

disk space.

Self-Assessment Questions 1. What do you mean by file attributes? 2. What are the different operation can be perform on

a file? 3. Explain various file accessing methods. 4. Write a short note on file access control.

Unit 13: I/O System 13.1

Objective

After studying this unit, you will be able to understand the

input-output subsystem. You will learn the principles of I/O hardware and their complexities. You will also study about

working of input-output scheduling, spooling and error handling etc. •

Explore the structure of an

operating system's I/O subsystem. • Discuss the principles of I/O hardware and its complexity. •

Provide details of the performance aspects of

I/O

hardware and software.

13.2 Introduction

62% MATCHING BLOCK 254/301 OS_Notes_Full.pdf (D108987417)

The control of devices connected to the computer is a major concern of operating-system designers. Because input

output devices vary so widely in their function and speed (

consider a mouse, a hard disk, and a cdrom), varied methods are needed to control

72% MATCHING BLOCK 255/301 OS_Notes_Full.pdf (D108987417)

them. These methods form the I/O subsystem of the kernel, which separates the rest of the kernel from the

complexities of managing I/O devices.

The basic I/O hardware elements, such as ports, buses, and device controllers, accommodate a wide variety of

I/O

devices.

To encapsulate the details and oddities of different devices, the kernel of an operating system is structured to use device-

driver modules. The

101 of 210 5/3/2023, 10:31 AM

device drivers present

100% MATCHING BLOCK 257/301 INF_1036.pdf (D164968063)

a uniform device access interface to the I/O subsystem, much as system calls provide a standard interface between the

application and the operating system. 13.3

Overview I/O Hardware Computers operate a with many kinds of I/O devices. like general categories of storage devices

(disks, tapes), transmission devices (network cards, modems), and human-interface devices (screen, keyboard, mouse).

Here we will learn

concepts to understand how the devices are attached and how the software can control the hardware.

85% MATCHING BLOCK 256/301

A device communicates with a computer system by sending signals over a cable or even through the air. The device

communicates with the machine via a connection point i.e. port. If devices use a common set of wires, the connection

is called a bus.

A bus is

100% MATCHING BLOCK 272/301 INF_1036.pdf (D164968063)

a set of wires and a rigidly defined protocol that specifies a set of messages that can be sent on the wires.

Figure 13.1: Bus Structure

Buses are used widely in computer architecture. Atypical PC bus structure in the

figure 13.1 shows a PCI bus (

the common PC system

100% MATCHING BLOCK 258/301

bus) that connects the processor-memory subsystem to the fast devices and an expansion bus that connects relatively

slow devices such as the keyboard and serial and parallel ports. In the upper-right portion of the figure, four disks are

connected together on a SCSI (

Small Computer System Interface)

95% MATCHING BLOCK 259/301

bus plugged into a SCSI controller. A controller is a collection of electronics that can operate a port, a bus, or a device.

A serial-port controller is a simple device controller. It is a single chip (

or portion of

96% MATCHING BLOCK 260/301

a chip) in the computer that controls the signals on the wires of a serial port.

102 of 210 5/3/2023, 10:31 AM

100% MATCHING BLOCK 261/301

The SCSI bus controller is often implemented as a separate circuit board

that plugs into the computer.

It typically contains a processor, microcode, and some private memory

to enable it to process the SCSI protocol messages.

Some devices have their own built-in

controller.

The disk controller

implements the disk side of the protocol for some kind of connection-SCSI or ATA (Advanced Technology Attachment),

for instance.

It

has microcode and a processor to do many tasks, such as bad-sector mapping, prefetching, buffering,

and caching.

The controller has one or more registers for data and control signals.

The processor communicates with the controller by reading and writing bit patterns in these registers.

100% MATCHING BLOCK 262/301

The CPU executes I/O requests using the standard data-transfer instructions to read and write the device- control

registers.

An I/O

port typically

consists of four registers,

called the (1) status, (2) control, (3) data-in, and (4) data-out registers. • The

status register

contains bits that can be

read

by the host. These bits indicate states, such as whether the current command has completed, whether a byte is available

to be read from the data-in register, and whether a device error

has occurred. •

The

control register

can be

written by the host

to start a command or to change the mode of

a device.

For instance, a certain bit in the control register of a serial port chooses between full-duplex and half-duplex

comn1unication,

another bit enables parity checking, a third bit sets the word length to 7 or 8 bits, and other bits select one of the speeds

supported by the serial port. •

The data-

in register is read by the host to get input. •

The data-out register is written by the host to send output.

The

data registers are typically 1 to 4 bytes in size.

Some controllers have FIFO chips that can hold several bytes of input or output data to expand the capacity of the

controller beyond the size of the data register.

103 of 210 5/3/2023, 10:31 AM

A FIFO chip can hold a small burst of data until the device or host is able to receive those data.

13.3.1 Polling

Device polling refers to a technique that lets the operating system periodically poll devices, instead of relying on the

devices to generate interrupts when they need attention. This might seem inefficient and counterintuitive, but when

done properly, polling gives more control to the operating system on when and how to handle devices, with a number of

advantages in terms of system responsiveness and performance. In particular, polling reduces the overhead for context

switches which is incurred when servicing interrupts and gives more control on the scheduling of the CPU between

various tasks (user processes, software interrupts, device handling) which ultimately reduces the chances of live lock in

the system.

13.3.2

Interrupts

The basic interrupt mechanism works as follows.

The CPU hardware has a wire called the

interrupt- request line

that the CPU senses after executing every instruction.

When the CPU detects that a controller has asserted a signal on the

Figure 13.2: Interrupt I/O cycle

Interrupt request

line, the CPU performs a state save

and jumps to the interrupt handler routine at a fixed address in memory.

Title

interrupt handler determines the cause of the interrupt, performs the necessary processing,

performs a state restore,

and executes a

return from interrupt

instruction to return the CPU

to the execution state prior to the interrupt.

We say

that the

95% MATCHING BLOCK 263/301

device controller raises an interrupt by asserting a signal on the interrupt request line, the CPU catches the interrupt

and dispatches it to the interrupt handler, and the handler clears the interrupt by servicing the device.

Figure summarizes the interrupt-driven I/O cycle. 13.3.3

Direct Memory Access I/O devices such as hard disks write to memory all the time, and with a normal system setup, their

requests go through to the CPU first and then the CPU reads/writes the data from/to the memory sequentially. When

such a request involves polling/busy wait loops, it is known as programmed I/O. The problem with polling is that it

wastes a lot of CPU resources as it sits in a tight loop checking for changes in values. The second method for I/O devices

to access memory is called interrupt-driven. The problem now is that servicing interrupts is expensive, in the sense that

when an interrupt signal is sent by an I/O device, before or after a memory access, the following has to be done every

time: • The data for the currently running process in the CPU is to be saved to the stack. • An Interrupt Service Routine is

allowed to handle the interrupt • Data is sent back to the I/O controller • The data for the previously running process is

restored from the stack.

104 of 210 5/3/2023, 10:31 AM

Such a method has a very large overhead. The state information for the current process has to be saved before the I/O

operation can use the CPU, and then restored after it has finished. A much better way of doing things would be to take

away the CPU from the picture all together and have the I/O devices talking directly to the memory. This is where DMA

(Direct Memory Access) comes in. The DMA controller sits on the shared system bus containing the memory and CPU

and allows 7 I/O devices to connect to it. Once it has all the information it needs about a particular I/O device, such as

the number of words (word = 16 bits) to transfer and the memory address of the first word of input or output (Memory

Address Counter), the DMA controller then transmits the data directly to the memory via the shared system bus. The

advantages of DMA The most important is that the processor does not have to worry about I/O operations between

computer peripherals and memory. Another advantage is the fact that transfers are much simpler since they do not

require the CPU to execute specific instructions to do the transfer or have to deal with interrupts being signaled in from

I/O devices. All the DMA controller needs is a start indicator to let it know when it can start transferring data to memory, a

counter for how many words are left and a stop indicator to clean up at the end.

13.4 Application I/

O Interface User application access to a wide variety of different devices is accomplished through layering, and through

encapsulating all of the device-specific code into device drivers, while application layers are presented with a common

interface for all (or at least large general categories of) devices.

Figure 13.3 : Kernel I/

O

Structure

Most devices can be characterized as either block I/O, character I/O, memory mapped file access, or network sockets. A

few devices are special, such as time-of-day clock and the system timer. Most OS also have an escape, or back door,

which allows applications to send commands directly to device drivers if needed. In UNIX this is the ioctl() system call (

I/O Control). ioctl() takes three arguments - The file descriptor for the device driver being accessed, an integer

indicating the desired function to be performed, and an address used for communicating or transferring additional

information.

13.4.1

Blocked Character Device

Block devices are accessed a block at a time and are indicated by a "b" as the first character in a long listing on UNIX

systems. Operations supported include read(), write(), and seek(). Accessing blocks on a hard drive directly (without

going through the

file system

structure) is called raw I/O, and can speed up certain operations by bypassing the buffering and locking normally

conducted by the OS. (It then becomes the application's responsibility to manage those issues.) A new alternative is

direct I/O, which uses the normal file system access, but which

disables buffering and locking operations. Memory-mapped file I/O

can be layered on top of block-device drivers. Rather than

reading in the entire file, it is mapped to a range of memory addresses, and then paged into memory as needed using the

virtual memory system. Access to the file is then accomplished through normal memory accesses, rather than through

read() and write() system calls. This approach is commonly used for executable program code. Character devices are

accessed one byte at a time, and are indicated by a "c" in UNIX long listings. Supported operations include get() and put(

), with more advanced functionality such as reading an entire line supported by higher-level library routines.

13.4.2

105 of 210 5/3/2023, 10:31 AM

Blocking & Non Blocking Input Output With blocking I/O a process is moved to the wait queue when an I/O request is

made, and moved back to the ready queue when the request completes, allowing other processes to run in the

meantime. With non-blocking I/O the I/O request returns immediately, whether the requested I/O operation has

(completely) occurred or not. This allows the process to check for available data without getting hung completely if it is

not there. One approach for programmers to implement non-blocking I/O is to have a multi-threaded application, in

which one thread makes blocking I/O calls (say to read a keyboard or mouse), while other threads continue to update

the screen or perform other tasks. A subtle variation of the non-blocking I/O is the asynchronous I/O, in which the I/O

request returns immediately allowing the process to continue on with other tasks, and then the process is notified (via

changing a process variable, or a software interrupt, or a callback function) when the I/O operation has completed, and

the data is available for use. (The regular non-blocking I/O returns immediately with whatever results are available but

does not complete the operation and notify the process later.)

13.5

Kernel I/O Sub System

Kernels provide many services related to I/O.

Several services-scheduling, buffering, caching, spooling, device reservation, and error handling-are provided by the

kernel's I/O subsystem and build on the hardware and

device driver infrastructure.

The I/O subsystem is also responsible for protecting itself from errant processes and malicious users.

13.5.1

Input Output

Scheduling

To schedule

a set of I/O requests means

to determine a good order in which to execute them.

The order in which applications issue system calls rarely is the best choice.

Scheduling

95% MATCHING BLOCK 264/301

can improve overall system performance, can share device access fairly among processes, and can reduce the average

waiting time for

I/O

to complete.

Operating-system developers implement scheduling by maintaining a wait

100% MATCHING BLOCK 265/301

queue of requests for each device. When an application issues a blocking I/O system call, the request is placed on the

queue for that device. The I/O scheduler rearranges the order of the queue to improve the overall system efficiency

and the average response time experienced by applications.

100% MATCHING BLOCK 266/301

queue of requests for each device. When an application issues a blocking I/O system call, the request is placed on the

queue for that device. The I/O scheduler rearranges the order of the queue to improve the overall system efficiency

and the average response time experienced by applications.

106 of 210 5/3/2023, 10:31 AM

100% MATCHING BLOCK 267/301

queue of requests for each device. When an application issues a blocking I/O system call, the request is placed on the

queue for that device. The I/O scheduler rearranges the order of the queue to improve the overall system efficiency

and the average response time experienced by applications.

The operating system

may also try to be fair, so that no one application receives especially poor service, or it may give priority service for delay-

sensitive requests.

One way in which

100% MATCHING BLOCK 268/301

the I/O subsystem improves the efficiency of the computer is by scheduling I/O operations. Another way is by using

storage space in main memory or on disk via techniques called buffering, caching, and spooling. 13.5.2

100% MATCHING BLOCK 269/301

the I/O subsystem improves the efficiency of the computer is by scheduling I/O operations. Another way is by using

storage space in main memory or on disk via techniques called buffering, caching, and spooling. 13.5.2

100% MATCHING BLOCK 270/301

the I/O subsystem improves the efficiency of the computer is by scheduling I/O operations. Another way is by using

storage space in main memory or on disk via techniques called buffering, caching, and spooling. 13.5.2

100% MATCHING BLOCK 271/301

Buffering A buffer is a memory area that stores data while they are transferred between two devices or between a

device and an application. Buffering is done for three reasons.

100% MATCHING BLOCK 273/301

Buffering A buffer is a memory area that stores data while they are transferred between two devices or between a

device and an application. Buffering is done for three reasons.

One reason

is

to cope with a speed mismatch between the producer and consumer of a data stream.

Suppose, for example, that a file is being received via modem for storage on the hard disk.

The modem is about a thousand times slower than

the hard disk. So a buffer is created in main memory to accumulate the bytes received from the modem.

When an entire buffer of data has arrived, the buffer can be written to disk in a single operation.

Since the disk write is not instantaneous and the modem still needs a place to store additional incoming data, two buffers

are used. After the modem

fills the first buffer, the disk write is requested.

The modem then starts to fill the second buffer while the first buffer is written to disk.

107 of 210 5/3/2023, 10:31 AM

By the time the modem has filled the second buffer, the disk write from the first one should have completed, so the

modem can switch back to the first buffer while the disk writes the second one. This double buffering decouples the

producer of data from the consumer, thus relaxing timing requirements between them.

13.5.3

100% MATCHING BLOCK 274/301

Caching A cache is a region of fast memory that holds copies of data. Access to the cached copy is more efficient than

access to the original.

100% MATCHING BLOCK 275/301

Caching A cache is a region of fast memory that holds copies of data. Access to the cached copy is more efficient than

access to the original.

For instance, the instructions of the currently running process are stored on disk, cached

in physical memory, and copied again in

the CPU's secondary and primary caches.

The difference between a buffer and a cache is

that

a buffer may hold the only existing copy of a data item, whereas a cache,

by definition,

just holds a copy

on faster storage of an item that resides elsewhere.

100% MATCHING BLOCK 276/301

Caching and buffering are distinct functions, but sometimes a region of memory can be used for both purposes.

100% MATCHING BLOCK 277/301

Caching and buffering are distinct functions, but sometimes a region of memory can be used for both purposes.

For instance, to preserve copy semantics and to enable efficient scheduling of disk I/O, the operating system uses buffers

in main memory to hold disk data.

These buffers are also used as a cache,

to improve the I/O efficiency for files that are shared by applications or that are being written and reread rapidly.

100% MATCHING BLOCK 278/301

When the kernel receives a file I/O request, the kernel first accesses the buffer cache to see whether that region of the

file is already available in main memory. 13.5.4

100% MATCHING BLOCK 279/301

When the kernel receives a file I/O request, the kernel first accesses the buffer cache to see whether that region of the

file is already available in main memory. 13.5.4

Spooling and Device Reservation

108 of 210 5/3/2023, 10:31 AM

A

93% MATCHING BLOCK 280/301

spool is a buffer that holds output for a device, such as a printer, that cannot accept interleaved data streams. Although

a printer can serve only one job at a time, several applications may wish to print their output concurrently, without

having their output mixed together. The

operating system solves this problem by intercepting all output to the printer.

Each application's output is spooled to a separate disk file.

When an application finishes printing, the spooling system queues the corresponding spool file for output to the printer.

The spooling system copies the queued spool files to the printer one at a time.

In

some operating systems, spooling is managed by a system daemon process.

In others, it is handled by an in-kernel

thread.

In either case,

the operating system

100% MATCHING BLOCK 281/301

provides a control interface that enables users and system administrators to display the queue, to remove unwanted

jobs before those jobs print, to suspend printing while the printer is serviced, and so on. 13.5.5

100% MATCHING BLOCK 282/301

Error handling An operating system that uses protected memory can guard against many kinds of hardware and

application errors,

so that a complete system failure is not the usual result of each minor mechanical glitch.

Devices and

I/O

transfers can fail in many ways, either for

89% MATCHING BLOCK 283/301 INF_1036.pdf (D164968063)

transient reasons! as when a network becomes overloaded! or for "permanent" reasons! as when a disk controller

becomes defective.

Operating systems can often compensate effectively for transient failures. For instance! a disk read () failure results in a

read () retry! And a network send () error results in a resend ()! If the protocol so specifies.

Unfortunately! if an important component experiences a permanent failure, the operating system is unlikely to recover.

As a general rule, an I/O system call will return one bit of information about the status of the call, signifying either

success or failure. In the UNIX operating system, an additional integer variable named

error number

is used to return an error code-one of about a hundred values-indicating the general nature of the failure (for example,

argument out of range, bad pointer, or file not open).

By contrast, some hardware can provide highly detailed error information, although many current operating systems are

not designed to convey this information to the application.

For instance, a failure of a SCSI device is reported by the SCSI protocol in three levels of detail: a

109 of 210 5/3/2023, 10:31 AM

sense

key that identifies the general nature of the failure, such as a hardware error or an illegal request; an additional sense

code that states the category of failure, such as a bad command parameter or a self-test failure; and an additional sense-

code qualifier that gives even more detail, such as which command parameter was in error or which hardware

subsystem failed its self-test.

Further, many SCSI devices maintain internal pages of error-log information that can be requested by the host-but

that

seldom are.

13.5.6 I/

O Protection Errors are closely related to the issue of protection.

A user process may accidentally or purposefully attempt to disrupt the normal operation of a system by attempting to

issue illegal I/O instructions.

We can use various mechanisms to ensure that such disruptions cannot take place in the system.

To prevent users from performing illegal I/O, we define all

I/O

instructions to be privileged instructions.

Thus, users cannot issue I/O instructions directly; they must do it through the operating system.

13.5.7

Kernel Data Structure The kernel needs to keep state information about the use of I/O components.

It does so through a variety of in-kernel data structures, such as the open-file table structure from Section 11.1. The

kernel uses many similar structures to track network connections, character-device communications, and other

I/

O

activities.

UNIX provides file-system access to a variety of entities, such as user files, raw devices, and the address spaces of

processes.

Although each of these entities supports a read () operation, the semantics differ.

For instance, to read a user file, the kernel needs to probe the buffer cache before deciding whether to perforn1 a disk

I/O.

To read a

raw disk, the kernel needs to ensure that the request size is a multiple of the disk sector size and is aligned on a sector

boundary.

To read a process image, it is merely necessary to copy data from memory.

UNIX encapsulates these differences within a uniform structure by using an object-oriented

technique.

13.6 Summary The I/O system is modular; you can easily expand or customize it. The OS I/O system consists of the

following software components: • The Kernel • File Managers • Device drivers • The device descriptor The kernel, file

managers, and device drivers process I/O service requests at different levels. The device descriptor contains information

used to assemble the elements of a particular I/O subsystem. The file manager, device driver, and device descriptor

modules are standard memory modules. •

Management of I/O devices is a very important part of the operating system - so important and so varied that entire I/O

subsystems are devoted to its operation. (Consider the range of devices on a modern computer, from mice, keyboards,

disk drives, display adapters, USB devices, network connections, audio I/O, printers, special devices for the handicapped,

and many special-purpose peripherals.) • I/O subsystems must contend with two (conflicting?) trends (1) The gravitation

towards standard interfaces for a wide range of devices, making it easier to add newly developed devices to existing

systems, and (2) the development of entirely new types of devices, for which the existing standard interfaces are not

always easy to apply. •

110 of 210 5/3/2023, 10:31 AM

96% MATCHING BLOCK 285/301 OS_Notes_Full.pdf (D108987417)

Device drivers are modules that can be plugged into an OS to handle a particular device

or category of similar devices.

Self-Assessment Questions 1. What do you mean by I/O subsystem? 2. Explain Following. (i) Polling (ii) Interrupts (iii)

Direct Memory Access 3. What do you mean by Kernel input output sub system? Explain following: (i) Buffering (ii)

Spooling (iii) Catching

Unit 14: System Protection

14.1

Objective

After studying

this unit, you will be able to understand the concept of

protecting a system and

its need and domain. You will also learn about different methods of enforcing protecting mechanisms like access rights,

access matrix. This chapter provides a general overview of • Protection concept & goal • Principles of protection •

Domain of protection • Protection mechanism : Access right, Access matrix

14.2 Introduction Protection

is strictly an internal problem.

How do we provide controlled access to program & data stored in computer system.

The

various processes (user and system processes) must be protected from one other's activities. Protection mechanisms

deal with

86% MATCHING BLOCK 284/301

controlling the access of programs, processes or users to the resources of a computer system.

Security however, an issue that requires a control over the external environment within which the system operates,

Internal protection is of no use if the computer system is accessed by an unauthorized individual who can remove some

important files or insert a virus into the system and make it non-functional. 14.3 Goals of Protection The protection

mechanism to be enforced into a system should have the following goals: • In multi-propgramming systems, the

operating system should enable the users to safely share a common logical address space such as files etc. It should also

enable the users to share a common physical address space i.e., memory. In such systems, therefore, the goal should be

to prevent accidental and intentional destructive behavior. • Ensure fair and reliable resource usage i.e., each program

component active in a system should use the system resources only in accordance with certain policies (stated for the

use of these resources). Since the policies for a resource usage may vary dependency upon an application, therefore,

protection mechanisms should be provided as tools for the enforcement of these varying policies.

14.4

Principles of Protection Frequently, a guiding principle can be used

in

the design of an operating system. This principle simplifies design decisions and keeps the system consistent and easy to

understand.

A key time-tested guiding principle for protection is the

principle of least privilege.

It dictates that

78% MATCHING BLOCK 286/301 OS_Notes_Full.pdf (D108987417)

programs, users and even systems be given just enough privileges to perform their tasks.

111 of 210 5/3/2023, 10:31 AM

Consider the analogy of a security guard with a passkey.

It this key allows the guard into just the public areas that she guards, then misuse of the key will result in minimal

damage.

If however, the passkey allows access to all areas, then damage from its being lost, stolen, misused, copied or otherwise

compromised will be much greater.

An operating system following the principle of least privilege implements its features, programs, system calls, and data

structures so that failure or compromise of a component does the minimum damage and allows the minimum damage

to be done.

The overflow of a buffer in a system daemon might cause the daemon to fail, for example, but should not allow the

execution of code from the process's stack that would enable a remote user to gain

maximum privileges and access to the entire system (as happens too often today.)

Managing users with the principle of least privilege entails creating a separate account for each user, with just the

privileges that the user needs.

An operator who needs to mount tapes and backup files on the system has access to just those commands and files

needed to accomplish the job.

Some systems implement role- based access control (RBAC) to provide this functionality.

Computers implemented in a computing facility under the principle of least privilege can be limited to running specific

services, accessing specific remote hosts via specific services, and doing so during specific

time.

The principle of least privilege can help produce a more secure computing

e

environment. Unfortunately, it frequently does not.

For example, Windows 2000 has a complex protection scheme at its core and yet has many security holes.

By comparison, Solaris is considered relatively secure, even though it is a variant of UNIX, which historically was designed

with little protection in mind.

One reason for the difference may be that Windows 2000 has more lines of code and more services than Solaris and

thus has more to secure and protect.

Another reason could be that the protection scheme in Windows 2000 is incomplete or protects the wrong aspects of

the operating system, leaving other area vulnerable.

14.5

Domain of Protection

A computer system is a collection of processes

and objects. By objects, we mean both

hardware objects (

such as the CPU, memory segments, printers, disks,

and tape

drives) and

software objects (

such as files, programs, and semaphores).

Each object has a unique name that differentiates it from all other objects in

the system,

and each

65% MATCHING BLOCK 287/301 Operating System.pdf (D30089487)

can be accessed only through well-defined and meaningful operations. Objects are essentially abstract data types.

The operations that are possible may depend on the object. For example,

a CPU can

only

be executed on.

112 of 210 5/3/2023, 10:31 AM

Memory segments can be read and written, whereas a

CD-ROM or DVD-ROM

can only be read. Tape drives can be read, written, and rewound.

Data files can be created, opened, read, written, closed, and deleted; program files

can be read, written, executed, and deleted. A process should be allowed to access only those resources

for which it has authorization,

Furthermore, at any time,

58% MATCHING BLOCK 288/301 Operating System.pdf (D30089487)

a process should be able to access only those resources that it currently requires to complete its

task.

This second requirement,

commonly referred to

50% MATCHING BLOCK 289/301 Operating System.pdf (D30089487)

as the need-to-know principle, is useful in limiting the amount of damage a faulty process can cause in the system.

For example, when process p invokes procedure A(),

the procedure should

be allowed

to access only its own variables and the formal parameters

passed to

it, it should not be able to access all the variables of process p.

Similarly, consider the case where process p invokes a compiler to compile a particular file. The compiler

should not be able to access files arbitrarily but should have access only to a well-defined subset of files (such as the

source file, listing file, and so on) related to the file to be compiled.

Conversely, the compiler may have private files used for accounting or optimization purposes that process p should not

be able to access.

The need to-know principle is

85% MATCHING BLOCK 290/301 Operating System.pdf (D30089487)

similar to the principle of least privilege, in that the goals of protection are to minimize the risks of possible security

violations. 14.4.1 Domain Structure

To facilitate this scheme, a process operates within a

protection domain

which

specifies the resources

that the

84% MATCHING BLOCK 291/301 Operating System.pdf (D30089487)

process may access. Each domain defines a set of objects and the types of operation that may be invoked on each

object.

The ability to execute an operation on an object

113 of 210 5/3/2023, 10:31 AM

is an

access right.

A domain is a collection of

access rights,

each of which is an ordered pair >object-

name, rights-set<. For example,

if domain

D has the access right >file F, {read, write}<, then a process

executing in

domain D can both read and write file F; it cannot, however, perform any other operation on that object.

Figure 14.1 : System with three protection

Domains do not need to be disjoint; they may share access rights.

For example,

in Figure, we have three domains: D1, D2 and D3. The access right >O4, {print}” < is shared by D2 and D3, implying

that a process executing in either of these two domains can print object

O4.

Note that a process must be executing in domain D2

to read and write object

O1, while only processes in domain D3 may execute object O1.

78% MATCHING BLOCK 292/301 Operating System.pdf (D30089487)

The association between a process and a domain may be either static, if the

set of resources available to the process is fixed throughout the process's lifetime, or dynamic.

As might be expected, establishing dynamic protection domains is more complicated than establishing static protection

domains.

If the association between

process

and domains is fixed, and we want to

adhere

to the need-to-know principle, then a mechanism must be available

to change the content of a domain.

The reason stems from the fact that a process may execute in two different phases and may,

for example, need read access in one phase and write access in another.

If a domain is static,

we must define the domain to include both read and

write access.

However, this arrangement provides more rights than are needed in each

of the two phases, since we have read access in the phase where we

need only

write access, and vice versa. Thus, the need- to-know principle is violated.

We must allow the contents of

a domain to be modified so that it always

reflects the minimum necessary access rights.

If the association is dynamic, a mechanism is available to allow

domain switching,

enabling the process to switch from one domain to another.

We may also want to allow the content of a domain to be changed.

If we cannot change the content of a domain, we can provide the same effect by creating a new domain with the

changed content and switching to that new domain when we

114 of 210 5/3/2023, 10:31 AM

want to change the domain content. A domain can be realized in a variety of ways: • Each user may be a domain.

In

this case, the set of objects that can be accessed depends on the identity of the

user.

Domain switching occurs when the user is changed-generally when one user logs out and another user logs in. •

Each process may be a domain.

In this case, the set of objects that can be accessed depends on the identity of the process. Domain switching occurs

when

one process sends a message to another process and then waits for a response. • Each procedure may be a domain.

In this case, the set of objects that can be accessed

corresponds to the local variables defined within the procedure. Domain switching occurs when a procedure call is

made.

14.6

Methods for Enforcement of Protection Mechanisms As we know that

a computer system is a collection of processes and objects (resources). Objects

means hardware objects like CPU, memory,

disk, printer, etc., and software objects like files, programs, semaphores, etc. Each object has a specific kind of operation

applicable to it. For example, memory can be read or written, CPU can be only executed on, disk

can be read and written, data files can be created, deleted, opened, read, written and

closed. Thus, if these operations are known, a control mechanism can be implemented for each resource.

A process should be allowed to access only those resources

it has

been authorized to access. A process should follow “Need-to-know” principle so that it should be able to access the

resources, which it currently needs. This can be one way of implementing protection because only those resources,

which are currently required, will need to be protected and others will be totally safe.

14.5.1 Access right At any instance, protection should be provided to those resources, which may be currently used by a

process. Thus, a domain known as protection domain can be defined for a process. Such a domain will contain the

90% MATCHING BLOCK 293/301 Operating System.pdf (D30089487)

set of objects and the types of operations that can be invoked on each object.

This means that domain is a set of >object, rights< pair. 'Rights' refer to the operation that can be invoked by a

process on the corresponding object. These rights are also known as access rights of a particular process on the

corresponding object e.g. - if a process is executing in domain D = > data file F, {read, write}<; it can perform only

read and write operations on the data file named 'F'. The association of a process with a domain may be static of

dynamic. The association can be static only when the set of resources available to a process is fixed throughout its

lifetime. In case of static association, protection can be implemented by strictly adhering to the “need-to-know”

principle. This implies that the domain should keep changing at different instances of a process' execution, as and when

there is a change in the use of resources by this process. For example, consider a process P that needs read access (on a

disk) in one phase and write access in another phase. Then in the first phase the domain should include only read access

right i.e. > disk, read < and in the later phase, the domain should be modified to contain > disk, write < . In case

of dynamic association, a process can switch form one domain to another. Thou, here instead of changing the contents

of a domain (to which a process may be statically associated as in case of static association), a new domain may be

created with the changed content and the process may be switched to this new domain. Examples of implementation of

protection mechanisms using domain are: 1.

Dual mode (Monitor User mode) model of operating system execution

is an example of protection mechanism because it ensures that if

a process is in monitor mode, it can execute privileged instructions only and

115 of 210 5/3/2023, 10:31 AM

if it executes in user mode, it can invoke only non-privileged instructions. Memory protection can be implemented in

multiprogramming environment where more than one user program may be executing in the user mode and may

sometimes, interfere with each other. 2. In UNIX, a domain is actually associated with a user.

In this case, the sets of objects that can be accessed depend upon the identity

user.

Domain switching occurs when the user is changed generally,

this happens when one user logs out and

other

logs in

or in a multiuser system when more than one user may be trying to access the same object. This can help in safe sharing

of objects among different users. Therefore, the domain will contain > user id, domain-bit <. This domain bit is also

known as stupid bit. When

a user (with user-id = A) starts executing a file (owned by user B), whose domain bit is off, the

user-id of the process is set to A. This temporary user-id change ends when the process accessing the file exits or when

the user logs off, whichever is earlier. When the domain bit is on, the user-id is not changed to A and remains B i.e.,

owner of the file. This implies that file is used by B and thus, should not be used by A.

14.5.2 Access Matrix The access matrix model is the policy for user authentication and has several implementations such

as access control lists (ACLs) and capability lists. It is used to describe which users have access to what object (resources).

Thus, basically it checks the access rights of users on system resources. The access matrix model consists of four major

parts : • A list of objects • A list of subjects • A function T that returns n object's type

The matrix itself, with the objects (resources) making the columns and the subjects making the rows. In the cells where a

subject and object meet, lie the rights the subject has on that object. Some example access fights (as discussed in

previous sub-section) are read, write, execute, list and delete. Figure 14.2 shows an example access matix.

Figure 14.2: Example Access Matrix

An access matrix has several standard operations associated with it: • Entry of a right onto a specified cell • Removal of a

right from a specified cell • Creation of a subject • Creation of an object • Removal of a subject • Removal of an object

The access matrix shown is Figure 14.2 considers users as subject and states that john can read. write, execute and copy

the index.html file and that Doll can only read and copy this file. The subjects can also be processes and procedures. This

implies that access matrix model can be used to define the access fights for processes also. It means that subjects are in

fact the domains, which can be realized either as a user, or a process a procedure. The generalized access matrix model

is shown in figure 14.3 Figure 14.3 : Generalized Access Matrix

Advantages of access matrix as a mechanism for and implementing protection are: It

provides an appropriate mechanism for defining and implementing strict control for both the static and dynamic

association between processes and domains. When a process

is switched from one domain to another, n operation called switch is used. Thus, domain switching by processes can be

controlled

by including domains among the objects of the access matrix.

Figure 14.3 shows an access matrix with domains as objects. This figure shows that a

process executing in domain D1 can switch to domain D2.

Similarly,

a process executing in domain D2 can switch to domain D1 or domain D3.

It is thus an appropriate method of implementing protection mechanism.

Fig. 14.4: Generalized Access matrix with Domain as Object

Disadvantages of this method are: 1. Although a useful model, access matrices are inefficient for storage of access rights

in a computer system because they tend to be large and sparse. 2. Mechanisms must be enforced to protect the access

matrices themselves from change. 14.5.3 Implementation of access matrices The two most commonly used

implementations are access control lists (ACLs) and Capability lists.

1. Access Control Lists (ACLs) Access Control Lists (ACLs) are created by placing on each object a list of users and their

rights to access that object.

116 of 210 5/3/2023, 10:31 AM

2. Capability Lists Capability Lists are implemented by storing on each subject a list o right the subject has for every

object. This effectively gives each user, a sort of key ring. To remove access to a particular object, every user (subject)

that has access to it must be “touched”. A touch is an examination of a user's right to that object. Figure 14.4 shows an

example of implementation of the access matrix using capability lists.

14.5.4 Comparison of Access list and capabilities

Access Lists Capabilities List 01 Each object (resource has a list of pairs of the form >subject, access rights<

Each subject (user, process or procedure has a list of pairs of the form >object, access rights< 02 It would be tedious

to have separate Listing for each subject (user), therefore, they are grouped into classes. For example, in UNIX, there are

three Classes: self, group, anybody else.

Here capabilities are the names of the objects. The objects not referred to in a capability list cannot be even named. 03

The default is: Everyone should be also to access a file.

The default is:

No one should be able to access a file unless they have been given a capability 04 Access lists are simple and are used In

almost all file systems.

Capabilities are used in systems that Need to be very secure as if prohibits sharing of information unless access is given

to a subject.

14.7 Revocation of Access Rights

In a dynamic protection system, we may sometimes need to revoke access right to objects shared by different users.

Various questions about revocation may arise.

The access list is searched for any access rights to be revoked, and they are deleted from the list.

Revocation is immediate and can be general or selective, total or partial, and permanent or temporary.

Capabilities, however, present a much more difficult revocation problem.

Since the capabilities are distributed throughout the system, we must find them before we can revoke them.

Schemes that implement revocation for capabilities include the following: • Reacquisition: Periodically, capabilities are

deleted from each domain. If a process wants to use a capability, it may find that that capability has been deleted. The

process may then try to reacquire the capability. It access has been revoked, the process will not be able to reacquire the

capability. • Back-pointers: A list of pointers is maintained with each object, pointing to all capabilities associated with

that object. •

Indirection: The capabilities point indirectly, not directly, to the objects Each capability points to a unique entry in a global

table, which in turn points

to the object. We implement revocation by searching the global table for the desire entry and deleting it.

Then, when an access is attempted, the

capability

and its table entry must match. This scheme was adopted in the CAL system. It does not allow selective revocation. •

Keys:

A key is a unique bit pattern that can be associated with a capability. This key is

defined when the capability is created, and it can be neither modified nor inspected by the process owning the

capability. A master key is associated with each object; it can be defined or replace with the set-key operation. When

a capability is created, the current value of the master key is associated

with the capability. When the capability is exercised, its key is compared with the master key.

If the keys match, the operation is allowed to continue; otherwise, an exception condition is raised.

Revocation replaces the master key with a new value via the set-key operation, invalidating all previous capabilities for

the

object.

This scheme does not allow selective revocation, since only one master key is associated with each

object. If we associate a list of keys with each object, then selective revocation can be implemented.

Finally, we can group all keys into one global table of keys.

A capability is valid only if its key matches some key in the global table.

We implement revocation by removing the matching

key from the table. With this scheme, a key can be associated with several objects, and several keys can be associated

with each object, providing maximum flexibility. In

117 of 210 5/3/2023, 10:31 AM

key-based schemes, the operations of defining keys, inserting them into lists and deleting them from lists should not be

available to all users

in particular, it would be reasonable to allow only the owner of an object to set the keys for that object.

This choice, however, is a policy decision that the protection system can implement but should not define.

14.8

Summary Computer system

objects

need to be protected from misuse. Objects may be hardware (memory, CPU & I/O devices) or software (files, programs &

semaphores) An access right is permission to perform an operation on an object. A domain is a set of access rights.

Processes execute in domains.

The access matrix is a general model of protection that provides a mechanism for protection without imposing a

particular policy on the system or its users.

Revocation of access rights in a dynamic protection model is typically easier to implement with an access list scheme

then with a capability list.

Self Assessment Questions 1.

Discuss the strengths and weakness of implementing an access matrix using access list that are associated with objects.

2.

Compare capability lists and access lists. 3. Differentiate between static and dynamic association of a process with a

domain. 4.

86% MATCHING BLOCK 294/301
InstructorsSolutions_ExcerciseQuestions.pdf

(D147754554)

What is the “need-to-know” principle? Why is it important for protection system to adhere to this principle? 5.

Suppose that you share a file on a network with fellow student so that he can copy this file from your system. What right

should he be given on this file? What will be the contents of cell of access matrix corresponding to this grant? 6. Discuss

access control mechanism in context to data files. 7. What is a domain? What are access hierarchies and protection rings.

Unit 15: System Security

15.1

Objective

After studying this unit, you will be able to understand concept of

security and its principles and need. You will learn about methods of authentication, threats to computer system and

classification of security system. This chapter provides a general overview of • Security concepts • Authentication and

Encryption • Program and System Threats • Computer Security Classification

15.2 Introduction Security is an important aspect of any OS. In general secure system will control, through use of specific

security features, access of to information that only properly authorized individual or processes operating on their behalf

will have access to read, write, create or delete.

90% MATCHING BLOCK 295/301 OS_Notes_Full.pdf (D108987417)

Security Violation (or misuse) of the system can be categorized as intentional or accidental. It is easier to protect

against accidental misuse than against malicious misuse. 15.1.1

Need for Security There in no or very little security in computer application, until the importance of data was truly

realized. The computer applications for financial and personal data were developed, real need for security was felt &

people realized that data on computers are extremely important aspect of modern life. Two typical examples of such

security mechanism were as follows: • Provide a user id & Password to every user and use that information to

authenticate a user. • Encode information stored in fuel databases in some fashion so that it is not visible to users who do

not have right permission.

118 of 210 5/3/2023, 10:31 AM

As technology improved, fuel communication infrastructure became extremely mature and newer and newer application

behaves to be developed for various user demands and needs. People realized that basic security, measurers are not

quite enough.

15.1.2 Principles of Security These are four chief principles of security Authentication, Confidentiality, Non-Repudiation

and Integrity. There are two more, Access control & Availability which are not related to particular message but are linked

to overall system security as whole. a) Authentication: This mechanism helps to establish proof of identity. The origin of

an electronic message or document is correctly identified.

i. User A I Am user A User B Fabrication User C Pose a.

Figure 15.1: Absence of authentication

“Fabrication is possible in the absence of proper authentication mechanism” means absence of authentication leads to

Fabrication. b) Confidentiality:

User A Secret User B User C Interception

This specifies that only sender and intended recipients should be able to access the contents of message. Confidentiality

gets compromised if an unauthorized person is able to access a message

Figure 15.2: Loss of Confidentiality

Here confidential message sent by A to B, which is accessed by C without permission or knowledge of A and B. This type

of attack is interception. Interception causes loss (Absence) of message confidentiality. c) Non-repudiation: There are

situations where a user sends a message and later on refuses. That he had sent that message.

a. User B

User

A I

never sent, that message which you claim to have received

Figure 15.3: Establishing non-repudiation

“Nonrepudiation does not allow the sender of a message to refuse the claim of not sending that message”.

d)

Ideal route of message Transfer Rs 1000 to D Actual route of Message Transfer Rs 1000 to C User C User B User A

Integrity: When the contents of a message are changed after the sender sends it, but before it reaches the intended

recipients. Then integrity of message is Lost.

Figure 15.4: Loss of integrity Here user C tempers with message and send changed message to user B (Bank). User B has

no way of knowing that contents charged. This type of attack is modification. Modification Courses Loss of message

integrity. e) Access Control: This determines who should be able to access what. For example user A can read to file X,

Write to Y, Z but can only update P, Q .

a. This is broadly related in two areas : b.

Role management (user side) : Which user can do what? c. Rule management (resource side) : which resource is

available in what circumstances/ “Access Control specified who can access what”

f)

Server B

User C User A Availability:

This states that resources (i.e. information) should be available to authorize parties at all times.

Figure 15.5: Attack on availability Attack on availability Due to intentional action of unauthorized user C, an authorized

user A may not be able to contact server B. Such attach is called Interruption “Interruption puts availability of resource in

danger”

15.3 Authentication Authentication of the user of a system is one of the major security issues associated with an

operating system. This authentication is different from what we discussed in Section as it deals with authenticating the

user who tries to access a system a system resource. Generally, authentication of a user is based on: 1. User identifier and

password (Passwords) 2. Badge card possessed by a

user (

Artifacts) 3. Finger prints, retina pattern or signature (Biometrics techniques) Let us discuss these techniques in detail.

119 of 210 5/3/2023, 10:31 AM

15.2.1 Passwords The password is the most common authentication mechanism based on sharing of a secret. In a

password-based system each user has a password, which may initially be assigned by the system administrator. Many

systems allow users to subsequently change their passwords. The system stores all user passwords and uses them to

authenticate the users. When logging in, the system requests and the user supplies a presumably secret, user-specific

passwords. Passwords are popular because they require no special hardware and are relatively easy to implement. On the

negative side, passwords

offer limited protection, as they may be relatively easy to obtain or guess.

Unencrypted passwords files stored in a system are obviously an easy prey. User-chosen passwords are frequently

dictionary words or proper names. This makes them easy to remember and easy to guess. For example, user Ids, names

or surnames, and their backward spellings typically account for a significant percentage of passwords. System-chosen

passwords, on the other hand, are usually random combinations of letters and numbers that are hard to guess but are

also hard to remember. As a result, the users tend to write them down and store them in a handy place near the terminal.

This can be easily located by someone and thus may no longer be a secret. Various techniques have been proposed to

strengthen the level of protection availed by the password mechanism. Unfortunately, most of these have drawbacks that

reduce either their effectiveness or user acceptance. For example, password schemes may be multilevel, and users may

be required to supply additional password schemes may be multilevel, and users may be required to supply additional

passwords at the system's request at random intervals during computer use. This tends to annoy the actual authorized

users. Another technique is to have the system issue a dynamic challenge to the user after log-in. This challenge can be

in the form of a random number generated by the computer, to which the user is supposed to apply a secret

transformation, such as squaring and incrementing the value. Failure to do so may be used to detect unauthorized users.

15.2.2 Aritifact-Based Authentication The artifacts commonly used for user authentication include machine-readable

badges (usually with magnetic stripes) and electronic smart cards. Badge or card readers may be installed in or near the

terminals, and users are required to supply the artifact for authentication. In many systems, artifact identification is

coupled with the use of a password. That is, the user must insert the card and then supply his or her password. This form

of authentication is common with automated teller banking machines. The artifact-based systems work especially well in

environments where the artifact is also used for other purposes. For example, in some companies’ badges are required

for employees to gain access to the organization's gate. The use of such a badge as an artifact for computer access and

authentication can reduce the likelihood of the loss of an artifact. Smart cards can augment this scheme by keeping even

the user's password within the card itself, which allows authentication without storage of passwords in the computer

system. This makes it more difficult for mischievous users to uncover user passwords but he loss of such cards can be

hazardous. 15.2.3 Biometrics Techniques The third major group of authentication mechanisms is based on the unique

characteristics of each user. Some user characteristics can be established by means of biometrics techniques. These fall

in two basic categories: 1. Physiological characteristics, such as fingerprints, capillary patterns in the retina, had

geometry, and facial characteristics. 2. Behavioural characteristics, such as signature dynamics, voice pattern, and timing

of keystrokes. In general, behavioural characteristics can vary with a user's state and thus may be susceptible to higher

false acceptance or rejection rates. For example, signature dynamics and keystroke patterns may vary with a user's stress

level and fatigue. The biometrics detection devices are usually self-contained and independent of the computer system,

which increases their resistance to common computer penetration methods and improves the potential for tamper

proofing. The primary advantages of biometrics authentication are the largely increased accuracy of user authentication

and reduction of errors in security-conscious environments. For example, some retinal-scan devices claim an error rate

as slow as 1 in 3 million (1 in trillion when both eyes are scanned). The drawbacks of biometrics authentication include

increased cost, potential invasion of privacy, and reluctance of some users.

120 of 210 5/3/2023, 10:31 AM

15.4 Encryption As computer networks gain popularity, more sensitive information is being transmitted over channels

where eavesdropping and message interception is possible. Thus, the operating system should have some provision to

fight such situations i.e. to protect the data that are transferred over the network. Encryption is one such mechanism,

which allows such data to be scrambled so that even if some one intercepts it on the network, it is not readable to

him/her. Thus, the basic purpose of encryption is to make the data transfer secure over the network. Encryption works

as: 1. It transforms information from (“Clear” or “plan taxt”) to coded information (“Cipher text”), which cannot be read by

outside parties. 2. This transformation process is controlled by an algorithm and a key. 3. This process should be

reversible so that the intended recipient can read the information transmitted to him in the form of cipher text. But for

this a decryption mechanism which decrypts (decodes) the cipher text to plaintext is must. Figure shows a general

encryption and decryption mechanism. The main challenge in using this approach is the development of encryption

schemes that are impossible to break. These are two kinds of encryption: 1. 'Symmetrical Encryption' or secret key which

uses a single key to encrypt and decrypt the transmitted data. 2. 'Asymmetrical Encryption' which uses 'Private Key', in

which one key is used to encrypt and another to decrypt the transmitted data.

Figure 15.6: Encryption & Decryption Mechanism

15.5

Program and System Threats 15.4.1 Virus Attacker can launch application level or network level attack using virus. A virus

is a computer program that attaches itself to another authorized program and causes damage to the computer system

or to the network. A virus can be repaired (antivirus used) and its damage can be controlled by using good backup and

recovery procedures. During its lifetime, A virus goes through four phases: a. Dormant Phase: Here virus idle, activated

based on certain action / event / date-time / key stroke occurs this is optional phase. b. Propagation Phase: In this phase

virus copies itself and each copy starts creating more copies of self, them propagating virus. c. Triggering Phase: A

dormant virus moves into this phase when action / event for which it was waiting is initiated. d. Execution Phase: this is

actual work of virus, which could be destructive (delete files) or harmless (display some message). Virus can be classified

into following categories: a. Parasitic Virus: Common type, attaches itself to executable files and keeps replicating. b.

Memory resident Virus: Attaches itself to area of main memory then infect every executable. c. Boot sector Virus infects

master boot record of disk and spreads when Operating System starts booting computer. d. Stealth Virus: Built in

intelligence, prevents antivirus software from detecting it. e. Polymorphic Virus: Virus keeps on changing its signature

(identity) on very execution; Hence difficult to detect. f. Metamorphic Virus: In addition to changing signature, this virus

keeps rewriting itself every time detection much harder.

15.4.2 Worm

Perform resource eating tasks

Perform resource eating tasks Perform resource eating tasks Perform resource eating tasks Perform resource eating tasks

Perform resource eating tasks Perform resource eating

task, but no destruction

Worm is a piece of code which gets replicated. It is similar to virus, but its implementation is different. A virus modifies a

program / data while warm does not modify. It replicates again & again.

Figure: 15.7: Worm Hence network or Computer becomes very slow. Hence “A Worm does not perform any destructive

action only consumes system resources to bring it down.”

15.4.3

Trojan Horse It is a hidden piece of code, like virus but it attempts to reveal confidential information to an attacker. The

name (Trojan Horse) is due to the greck soldiers who hide inside a large hollow horse which was pulled by Troy citiren un

ware of the contents. Once greek soldiers entered the city of troy they opened the gates for the rest & greek soldiers. In

similar fashion, Trojan horse could silently sit in the code for a login screen by attaching itself to it. When user enters the

user id & password the Trojan horse captures these details & sends this information to the attacker without the

knowledge of the user. Attackes can misuse this information.

Figure 15.8: Trojan Horse

“ATrojan Horse allows an attacker to obtain some confidential. To obtain some confidential information about a

computer or network”.

121 of 210 5/3/2023, 10:31 AM

15.4.4. Trapdoors Sometimes, software designers may want to be able to modify their programs after their installation and

even after they have gone in production. To assist them in this task, the programmers leave some secret entry points

which do not require authorization to access certain objects. Essentially, they bypass certain validation checks. Only the

software designers know how to make use of these shortcuts. These are called trap doors. At times such shortcuts may

be necessary for coping with emergency situations, but then these trap doors can also be abused by some others to

penetrate into the system.

15.4.5

Logic Bomb Consider a program that initiates a security incident only under certain circumstances.

It would be hard to detect because under normal operations there would be no security hole.

However, when a predefined set of parameters were met, the security hole would be created.

This scenario is known as a

logic bomb.

A programmer, for example, might write code to detect if she is

still employed; if that check failed, a daemon could be spawned to allow remote access or code could be launched to

cause damage to the site.

15.4.6

Port Scanning Port scanning is not an attack but rather

is

a means for a cracker to detect a system's vulnerabilities to attack.

Port scanning typically is automated, involving a tool that attempts to create a TCP/IP connection to a specific port or a

range of ports.

For example, suppose there is a known vulnerability (or bug) in

send mail.

A cracker could launch a port scanner to try to connect to say, port 25 of

a particular

system or a range of systems.

If the connection was successful, the cracker (or tool) could attempt to communicate with the answering service to

determine if it was indeed send mail and, if so, if it was the version with the bug.

There is no such tool, but there are tools that perform subsets of that functionality.

For example, nmap (from http://www.insecure.org/nmap/) is a very versatile open-source utility for network exploration

and security auditing.

15.4.7

Stack & Buffer Overflow The stack-or buffer-overflow attack is the most common way for an attacker outside the

system, on a network or dial-up connection, to gain unauthorized access to the target system.

An authorized user of the system may also use this exploit for privilege escalation.

Essentially, the

attack exploits a bug in a program.

The bug can be a simple case of poor programming, in which the programmer neglected to code bounds checking on

an input field.

In

this case, the attacker sends more data than the program was expecting.

Using trial and error, or by examining the source code of the attacked program if it is available, the attacker determines

the vulnerability and writes a program to do the following: 1.

Overflow an input field, command-line argument, or input buffer-for example, on a network daemon-until it writes into

the stack. 2. Overwrite the current return address on the stack with the address of the exploit code loaded in step 3. 3.

Write a simple set of code for the next space in the stack that includes the commands that the attacker wishes to

execute-for instance, spawn a shell.

The result of this attack program's execution will be a root shell or other privileged command execution.

15.4.8

122 of 210 5/3/2023, 10:31 AM

Denial of Service DOS attacks make an attempt to prevent legitimate users from accessing some services, which they are

eligible for e.g. for instance an unauthorized user might sand too many login requests to a serves using random user id's

one after the other in quick succession, so as to flood the network and deny other legitimate users to access the system.

15.6 Computer Security Classification

83% MATCHING BLOCK 296/301 INF_1036.pdf (D164968063)

The U.S. Department of Defense Trusted Computer System Evaluation Criteria specify four security classifications

in systems. A,B, C, and D.

This specification is widely used to determine the security of a facility and to model security solutions, so we explore it

here.

The lowest-level classification is division D, or minimal protection.

Division D includes only one class and

94% MATCHING BLOCK 297/301 INF_1036.pdf (D164968063)

is used for systems that have failed to meet the requirements of any of the other security classes For instance, MS-DOS

and Windows 3.1 are in division D.

Division C, the next level of security, provides discretionary protection and accountability of users and their actions

through the use of audit capabilities. Division C has two levels: C1 and C2. AC1-class system incorporates some form of

controls that allow users to protect private information and to keep other users from accidentally reading or destroying

their data.

A C1 environment is one in which cooperating users access data at the same levels of sensitivity.

Most versions of UNIX

and C1 class.

The sum

total of all protection systems within a computer system (hardware, software, firmware) that correctly enforce a security

policy is known as a

trusted computer base (TCB).

The TCB

of a C1 system controls access between users and files by allowing the user to specify and control sharing of objects by

named individuals or defined groups.

In addition, the TCB requires that the users identify themselves before they start any activities that the TCB is expected to

mediate.

This identification is accomplished via a protected mechanism or password; the TCB protects the authentication data so

that they are inaccessible to unauthorized users.

A C2-class system adds an individual-level access control to the requirements of a C system.

For example, access rights of a file can be specified to the level

of a single individual. In addition, the system administrator can selectively audit the actions of any one or more users

based on individual identity.

The TCB also protects itself from modification of its code or data structures.

In addition, no information produced by a prior user is available to another user who accesses a storage object that has

been released back to the system.

Some special, secure versions of UNIX have been certified at the C2 level.

Division-B mandatory-protection systems have all the properties of a

class C2

system in addition, they attach a sensitivity label to each object.

The B1-class TCB maintains the security label of each object in the system; the label is used for decisions pertaining to

mandatory access control.

123 of 210 5/3/2023, 10:31 AM

For example, a user at the confidential level could not access a file at the more sensitive secret level.

The TCB also denotes the sensitivity level at the top and bottom of each page of any human-readable output.

In addition to the normal user name password authentication information, the TCB also maintains the clearancy and

authorizations of individual users and will support at least two levels of security.

These levels are hierarchical, so that a user may access any objects that carry sensitivity lables equal to or lower than his

security clearance.

For example, a secret-level user could access a file at the confidential level in the absence of other access controls.

Processes are also isolated through the use of distinct address spaces.

A B2-class system extends the sensitivity labels to each system resource, such as storage objects.

Physical devices are assigned minimum and maximum security levels that the system uses to enforce constraints

imposed by the physical environments in which the devices are located.

In addition, a B2 system supports covert channels and the auditing of events that could lead to the exploitation of a

covert channel.

A B3-class system allows the creation of access-control lists that denote users or groups not granted access to a given

named object.

The TCB also contains a mechanism to monitor events that may indicate a violation of security policy. The

mechanism notifies the security administrator and

security policy. The mechanism notifies the security administrator and. If necessary, terminates the event in the least

disruptive manner. The highest-level classification is division A. Architecturally, a class A1 system is functionally equivalent

to a B3 system, but it uses formal design specifications and verification techniques, granting a high degree of assurance

that the TCB has been implemented correctly.

A system beyond class

A1

might be designed and developed in a trusted facility by trusted personnel.

The use of a TCB merely ensures that the system can enforce aspects of a security policy, the TCB does not specify what

the policy should be.

Typically, a given computing environment develops a security policy for certification and has the plan accredited by a

security agency, such as the National Computer Security Center.

Certain computing environments may require other certification, such as that supplied by TEMPEST, which guards

against electronic eavesdropping.

For example, a TEMPEST certified system has terminals that are shielded to prevent electromagnetic field from escaping.

The

shielding ensures that equipment outside the room or building where the terminal is housed cannot detect what

information is being displayed by the terminal.

15.7

Summary Security has gained immense prominence as all business using computer system. The principal of any security

mechanism are confidentiality, authentication integrity, non-repudiation, access control & availability. Authentication is

consumed with establishing identity of user or system,

Encryption limits the domain of receivers of data. While authentication limits the domain of senders.

Severed type of attacks can be launched against program and against

individual computers or the masses.

Stack & buffer overflow techniques allow

successful attackers to change their level of system access.

Virus & Worms are self perpetuating, sometimes infecting thousand of computers

Denial of service attacks prevent legitimate use of target systems.

The four security classification in system A,B,C & D. the specifications are

widely used to determine the security of a facility and to model security solutions.

Self-Assessment Questions 1. What are the key principles of security? 2. Discuss reasons behind the significant of

authentication? 3. What is a worm ? Give the significant difference b/w Worm and Virus? 4. Discuss the principle behind

Trojan horse? 5. Describe the program& System threats like port scanning, trapdoor's, Logic bomb, and denial of service.

6. Explain the different computer system classification in detail. 7.

124 of 210 5/3/2023, 10:31 AM

100% MATCHING BLOCK 300/301
InstructorsSolutions_ExcerciseQuestions.pdf

(D147754554)

What are two advantages of encrypting data stored in the computer system?

Unit 16: Distributed Computing

16.1

Objective

This chapter provides a general overview about • Distributed Computing • Distributed Process Management • Message

Passing • Remote Procedure Calls • Distributed Memory Management

16.2 Introduction to Distributed Computing The high volume of networked computers, workstations, LANs has prompted

users to move from a simple end user computing to a complex distributed computing environment. This transition is not

just networking the computers, but also involves the issues of scalability, security etc. A Distributed Computing

Environment herein referred to, as DCE is essentially an integration of all the services necessary to develop, support and

manage a distributed computing environment. Despite the advances in processor design, users still demand more

performance. Eventually, single CPU technologies must give way to multiple processors parallel Computers: it is less

expensive to run 10 inexpensive processors cooperatively than it is to buy a new computer 10 times as fast. This change

is inevitable and has been realized to some extent in the specialization of subsystems like bus mastering drive controllers.

However, the need for additional computational power has thus far rested solely on advances in CPU technologies. The

present day computing industry depends on the efficient usage of resources. So instead of duplicating the resources at

every node of computing, a remote method of accessing the resources is more efficient and saves costs. This gave rise

to the field of distributed computing, where not only physical resources, but also processing power was distributed.

Distributed computing was driven by the following factors, a) Desire to share data and resources b) Minimize duplication

of functionality c) Increase cost efficiency d) Increase reliability and availability of resources.

When an organization migrates from networked computing to Distributed Computing a lot of factors are to be taken into

consideration. For example, replication of files gives rise to consistency problems, clock synchronization becomes

important, and security is a bigger consideration. A Distributed Computing Environment addresses all these issues by

providing an integrated set of cross platform, comprehensive services which aids in the development and application of

distributed applications. The following diagram gives a simple view of the DCE architecture,

The DCE cloud refers to the distributed computing environment tools that facilitate distributed computing. A distributed

system is a collection of independent computers that appear to its users as a single coherent system. - Andrew

Tannenbaum This certainly is the ideal form of a distributed system, where the “implementation detail” of building a

powerful system out of many simpler systems is entirely hidden from the user. Unfortunately, when we look at the reality

of networked computers, we find that the multiplicity of system components usually shines through the abstractions

provided by the operating system and other software. In other words, when we work with a collection of independent

computers, we are almost always made painfully aware of this. For example, some applications require us to identify and

distinguish the individual computers by name while in others our computer hangs due to an error that occurred on a

machine that we have never heard of before.

16.1.1 Examples of Distributed Systems Probably the simplest and most well known example of a distributed system is the

collection of Web servers—or more precisely, servers implementing the HTTP protocol—that jointly provide the

distributed database of hypertext and multimedia documents that we know as the World-Wide Web. The alternative to

using a distributed system is to have a huge centralized system, such as a mainframe. For many applications there are a

number of economic and technical reasons that make distributed systems much more attractive than their centralized

counterparts. • Cost: Better price/performance as long as commodity hardware is used for the component computers. •

Performance: By using the combined processing and storage capacity of many nodes, performance levels can be

reached that are beyond the range of centralized machines. • Scalability: Resources such as processing and storage

capacity can be increased incrementally. • Reliability: By having redundant components the impact of hardware and

software faults on users can be reduced. • Inherent Distribution: Some applications, such as email and the Web (where

users are spread out over the whole world), are naturally distributed. This includes cases where users are geographically

dispersed as well as when single resources (e.g., printers, data) need to be shared.

125 of 210 5/3/2023, 10:31 AM

However, these advantages are often offset by the following problems encountered during the use and development of

distributed systems:

New component: Network: Networks are needed to connect independent nodes and are subject to performance

limitations. Besides these limitations, networks also constitute new potential points of failure.

Security: Because a distributed system consists of multiple components there are more elements that can be

compromised and must, therefore, be secured. This makes it easier to compromise distributed systems.

Software Complexity: As will become clear throughout this course distributed software is more complex and harder to

develop than conventional software; hence, it is more expensive to develop and there is a greater chance of introducing

errors.

16.1.2 Hardware and Software Architectures A key characteristic of our definition of distributed systems is that it includes

both a hardware aspect (independent computers) and a software aspect (performing a task and providing a service).

From a hardware point of view distributed systems are generally implemented on multicomputers. From a software point

of view they are generally implemented as distributed operating systems or middleware.

16.1.3 Multi-computers A multicomputer consists of separate computing nodes connected to each other over a network.

Multi-computers generally differ from each other in three ways:

1. Node resources: This includes the processors, amount of memory, amount of secondary storage, etc. available on

each node. 2. Network connection: The network connection between the various nodes can have a large impact on the

functionality and applications that such a system can be used for. A multi computer with a very high bandwidth network

is more suitable for applications that actively share data over the nodes and modify large amounts of that shared data. A

lower bandwidth network, however, is sufficient for applications where there is less intense sharing of data. 3.

Homogeneity: A homogeneous multicomputer is one where all the nodes are the same, that is they are based on the

same physical architecture (e.g. processor, system bus, memory, etc.). A heterogeneous multicomputer is one where the

nodes are not expected to be the same.

One common characteristic of all types of multicomputers is that the resources on any particular node cannot be

directly accessed by any other node. All access to remote resources ultimately takes the form of requests sent over the

network to the node where that resource resides.

16.1.4 Distributed Operating System

A Distributed Operating System

A distributed operating system (DOS) is a an operating system that is built, from the ground up, to provide distributed

services. As such, a DOS integrates key distributed services into its architecture (Figure 2). These services may include

distributed shared memory, assignment of tasks to processors, masking of failures, distributed storage, interprocess

communication, transparent sharing of resources, distributed resource management, etc. A key property of a distributed

operating system is that it strives for a very high level of transparency, ideally providing a single system image. That is,

with an ideal DOS users would not be aware that they are, in fact, working on a distributed system. Distributed operating

systems generally assume a homogeneous multicomputer. They are also generally more suited to LAN environments

than to wide-area network environments. In the earlier days of distributed systems research, distributed operating

systems where the main topic of interest. Most research focused on ways of integrating distributed services into the

operating system, or on ways of distributing traditional operating system services. Currently, however, the emphasis has

shifted more toward middleware systems. The main reason for this is that middleware is more flexible (i.e., it does not

require that users install and run a particular operating system), and is more suitable for heterogeneous and wide-area

multicomputers.

16.1.5 Middleware Whereas a DOS attempts to create a specific system for distributed applications, the goal of

middleware is to create system independent interfaces for distributed applications.

126 of 210 5/3/2023, 10:31 AM

A Middleware System As shown in Figure 3 middleware consists of a layer of services added between those of a regular

network OS1 and the actual applications. These services facilitate the implementation of distributed applications and

attempt to hide the heterogeneity (both hardware and software) of the underlying system architectures. The principle

aim of middleware, namely raising the level of abstraction for distributed programming, is achieved in three ways: (1)

communication mechanisms that are more convenient and less error prone than basic message passing; (2)

independence from OS, network protocol, programming language, etc. and (3) standard services (such as a naming

service, transaction service, security service, etc.). To make the integration of these various services easier, and to

improve transparency and system independence, middleware is usually based on a particular paradigm, or model, for

describing distribution and communication. Since a paradigm is an overall approach to how a distributed system should

be developed, this often manifests itself in a particular programming model such as ’everything is a file’, remote

procedure call, and distributed objects. Providing such a paradigm automatically provides an abstraction for

programmers to follow and provides direction for how to design and set up the distributed applications. Paradigms will

be discussed in more detail later on in the course. Although some forms of middleware focus on adding support for

distributed computing directly into a language (e.g., Erlang, Ada, Limbo, etc.), middleware is generally implemented as a

set of libraries and tools that enable retrofitting of distributed computing capabilities to existing programming languages.

Such systems typically use a central mechanism of the host language (such as the procedure call or method invocation)

and dress remote operations up such that they use the same syntax as that mechanism resulting, for example, in remote

procedure calls and remote method invocation. Since an important goal of middleware is to hide the heterogeneity of

the underlying systems (and in particular of the services offered by the underlying OS), middleware systems often try to

offer a complete set of services so that clients do not have to rely on underlying OS services directly. This provides

transparency for programmers writing distributed applications using the given middleware. Unfortunately this ’everything

but the kitchen sink’ approach often leads to highly bloated systems. As such, current systems exhibit an unhealthy

tendency to include more and more functionality in basic middleware and its extensions, which leads to a jungle of

bloated interfaces. This problem has been recognised and an important topic of research is investigating adaptive and

reflective middleware that can be tailored to provide only what is necessary for particular applications. With regards to

the common paradigms of remote procedure call and remote method invocations, Waldo et al. [WWWK94] have

eloquently argued that there is also a danger in confusing local and remote operations and that initial application design

already has to take the differences between these two types of operations into account. We shall return to this point

later.

16.1.6 Distributed Systems and Parallel Computing Parallel computing systems aim for improved performance by

employing multiple processors to execute a single application. They come in two flavours: shared-memory systems and

distributed memory systems. The former use multiple processors that share a single bus and memory subsystem. The

latter are distributed systems in the sense of the systems that we are discussing here and use independent computing

nodes connected via a network (i.e., a multicomputer). Despite the promise of improved performance, parallel

programming remains difficult and if care is not taken performance may end up decreasing rather than increasing.

16.1.7 Distributed Systems in Context The study of distributed systems is closely related to two other fields: Networking

and Operating Systems. The relationship to networking should be pretty obvious, distributed systems rely on networks to

connect the individual computers together. There is a fine and fuzzy line between when one talks about developing

networks and developing distributed systems. As we will discuss later the development (and study) of distributed systems

concerns itself with the issues that arise when systems are built out of interconnected networked components, rather

than the details of communication and networking protocols. The relationship to operating systems may be less clear. To

make a broad generalization operating systems are responsible for managing the resources of a computer system, and

providing access to those resources in an application independent way (and dealing with the issues such as

synchronization, security, etc. that arise). The study of distributed systems can be seen as trying to provide the same sort

of generalized access to distributed resources (and likewise dealing with the issues that arise).

16.1.8 The DCE Cloud It Consists of the Following Components, a) Distributed File Service b) Distributed Time Service c)

Security Service d) Cell Directory Service e) Threads Service All these services are achieved by the use of Remote

Procedure calls (RPC).

127 of 210 5/3/2023, 10:31 AM

Properties of DCE A DCE Provides a Global Computing Environment, which can interoperate with other services like DNS

and X.500. This sort of global interoperability provides the much-needed interface for Write Once Run Anywhere

Applications. Also the suite of components is completely integrated and interoperable, which facilitates the networking

of two systems for processing even though they have different hardware and software configurations.

DCE Cells A collection of machines, users and resources that are a part of a group and having their own directory service

and security service can be called a DCE Cell. In an organization there may be a large number of cells, say one for each

department.

DCE Remote Procedure Calls (RPC) The Remote Procedure Call (RPC) in a DCE is the facility that lets users make remote

procedure calls and connect to another system on the DCE. The application programmer is essentially hidden from the

fact that it is a remote procedure call, by the components of RPC.

16.3 Distributed Process Management Most processes are created and managed by a command interpreter, but any

other process may also create new ones. All that is required is the capability that allows communication with a Kernel.

Most users will have access to the cluster creation capability for the Kernel running on their own workstation; that is,

users can create new processes on their own workstation. The capability for creating processes on pool processors is

typically kept by a “Processor Pool” service that acts as an agent for running programs on behalf of user processes. Load

balancing can be achieved by the Processor Pool service when it allocates pool processors judiciously. Although clusters

rarely move to a new host after being started up, migration is a central concept in the process management

mechanisms. This is became loading new clusters into memory, taking core dumps, making check- points, and doing

remote debugging are all similar to migrating a cluster. In fact, if we can migrate a cluster from one machine to another,

downloading, check-pointing, debugging, etc., should be simple. Load balancing by migrating cluster is a poorly

understood area and it is dubious whether it is very useful with the current sort of workstations and networks. Migrating a

five megabyte cluster, for instance, will take at least seven seconds, because that is how long it takes a fast transport

protocol to copy the memory contents over a 10 Mbit Ethernet; five megabyte programs are not at all uncommon,

especially as candidates for migration: long-lived clusters are usually large too. Migration is thus rather expensive and the

gain of a migrate operation must be big in order to merit one. In spite of this, migration can be useful. When a

workstation’s owner logs off in the evening, the workstation can turn itself into a Pool Processor and provide process

execution service to the rest of the system. When the owner returns in the morning, however, and logs back on, the

guest clusters running there could be nudged off by migrating them away to some other workstation.

16.4 Message Passing In distributed systems, there are two kinds of fundamental inter-process communication models:

a) Shared Memory and b) Message Passing. From a programmer’s perspective, shared memory computers, while easy to

program, are difficult to build and aren’t scalable to beyond a few processors. Message passing computers, while easy to

build and scale, are difficult to program. In some sense, shared memory model and message passing model are

equivalent. One of the solutions to parallel system communication is Distributed Shared Memory(DSM), where memory is

physically distributed but logically shared. DSM appears as shared memory to the applications programmer but relies on

message passing between independent CPUs to access the global virtual address space. The message-passing is a

common paradigm model for distributed computing, in the sense that it mimics the behavior in human communications.

It is an appropriate paradigm for network services where processes interact with each other through the exchanges of

messages. Message passing requires the participating processes to be tightly-coupled: throughout their interaction, the

processes must be in direct communication with each other. If communication is lost between the processes (due to

failures in the communication link, in the systems, or in one of the processes), the collaboration fails. The message-

passing paradigm is data- oriented. Each message contains data marshaled in a mutually agreed upon format, and is

interpreted as a request or response according to the protocol. The receiving of each message triggers an action in the

receiving process. It is inadequate for complex applications involving a large mix of requests and responses. In such an

application, the task of interpreting the messages can become overwhelming. A distributed object is one whose methods

can be invoked by a remote process, a process running on a computer connected via a network to the computer on

which the object exists.

128 of 210 5/3/2023, 10:31 AM

16.5 Remote Procedure Calls 16.4.1 Definitions RPC is a powerful technique for constructing distributed, client-server

based applications. It is based on extending the notion of conventional or local procedure calling, so that the called

procedure need not exist in the same address space as the calling procedure. The two processes may be on the same

system, or they may be on different systems with a network connecting them. By using RPC, programmers of distributed

applications avoid the details of the interface with the network. The transport independence of RPC isolates the

application from the physical and logical elements of the data communications mechanism and allows the application to

use a variety of transports.

16.4.2 Components of RPC The RPC components are a) The Interface Definition Language and its Compiler: The

skeletons and stubs are created by the IDL and then compiled by the IDL compiler. The server stubs replace the remote

part of the procedure call, and at the server the skeleton replaces the client. b) Runtime RPC Library: The RPC runtime

library is actively involved in the sending and receiving of remote procedure calls and finding the necessary server

services and communicating between the client and the server. c) Secure RPC Components: The Secure RPC

components work along with the security APIs to provide authentication and authorization for the remote procedure

calls. d) Name Service Independent APIs: The Name Service Independent (NSI) APIs help in locating the right server to

process the request. It is integrated into the directory services Component to facilitate the Association and Binding of the

Client to the Server. e) UUID Facilities: This UUID Stands for Universal Unique Identifiers. This is useful to generate UUIDs,

to uniquely identify each server and client on the DCE.

16.4.3 Specifications Conformance The DCE Architecture conforms to the Network Computing Architecture (NCA)

[IRPC] specifications. Transport independence and hence the OS independence is achieved as the NCA supports both

connection oriented as well as connection independent protocols.

16.4.4 Facilities Supplied by the RPC The following are the facilities that are supplied by the DCE RPC which are shielded

from the application programmer [IRPC] a) Security services b) Use of the Directory Service to Find the right server for

remote calls c) Managing the data formats which are different in each cell of the DCE. d) Management of messages for

example its fragmenting and reassembly. e) The communication protocols used. RPC can communicate over TCP/IP and

UDP.

16.4.5 Communication Methodology Using RPC The Following are the commonly used communication methodologies

in RPC.

Creation of the IDL File: The interface for RPC is defined in the IDL file and not the actual procedures. The IDL file

advertises the input and output of the Services offered by the remote server. The IDL file is written based on the server’s

procedure and then compiled using the IDL compiler. Compilation of the IDL file produce client and server stubs.

Client’s View of the RPC: The client is then provided with the Stubs generated by the compilation of the IDL file and it is

incorporated into its procedure calls. A simple procedure call is now converted to a complex RPC over the network.

Server’s View of RPC: The server side has the subroutine to perform the function as given in the IDL. The server receives

the parameters passed through the IDL and performs the procedure execution and sends back the results as published in

the IDL to the client.

Binding: The client finds the appropriate server to send the remote call by looking up the server’s services. This is called

Binding. The server when it starts must advertise the services it provides by registering with the directory services. The

client then accesses the directory service to find about the server, which offers its services and then addresses that

server.

16.4.6 Advantages of Using DCE RPC The following are the advantages that are obtained by using the DCE RPC

Operating System Independence: The RPC calls do not depend on the underlying OS’s network calls mechanism

Machine Independence: Even if the machines connecting through RPC are different, RPC can be successfully used as it

provides the instructions in native format for both the client and the server.

Language Independence: Any modern programming language can access the stubs and the skeletons that are produced

by the IDL compiler.

Protocol Independence: The server when registering with the DCE directory service explicitly states the protocol that it

uses. Hence the clients can use that protocol or access a different server. The connection oriented and connection free

protocols can be interchangeably used.

129 of 210 5/3/2023, 10:31 AM

16.4.7 Security Inbuilt in RPC The secure RPC is called the Authenticated RPC. There are various levels of authentication,

a) None – No Authentication b) Connection – Authentication through encryption occurs at the first connection or

handshake c) Call Authentication – The first data packet which is sent to the server is authenticated d) Packet

Authentication – Each packet of data sent through the RPC Interface is authenticated In addition to these levels packet

integrity and privacy can be protected by the use of Cryptographic Checksums.

16.4.8 How RPC Works An RPC is analogous to a function call. Like a function call, when an RPC is made, the calling

arguments are passed to the remote procedure and the caller waits for a response to be returned from the remote

procedure. Figure below shows the flow of activity that takes place during an RPC call between two networked systems.

The client makes a procedure call that sends a request to the server and waits. The thread is blocked from processing

until either a reply is received, or it times out. When the request arrives, the server calls a dispatch routine that performs

the requested service, and sends the reply to the client. After the RPC call is completed, the client program continues.

RPC specifically supports network applications.

Figure 16.5 Remote Procedure Calling Mechanism

16.6 Distributed Memory Management The memory management subsystem is one of the most important parts of the

operating system. Since the early days of computing, there has been a need for more memory than exists physically in a

system. Strategies have been developed to overcome this limitation and the most successful of these is virtual memory.

Virtual memory makes the system appear to have more memory than it actually has by sharing it between competing

processes as they need it.

Advantages: • Shields programmer from Send/Receive primitives • Single address space; simplifies passing-by-reference

and passing complex data structures • Exploit locality-of-reference when a block is moved • No memory access

bottleneck, as no single bus • Large virtual memory space • DSM programs portable as they use common DSM

programming interface

Disadvantages: • Programmers need to understand consistency models, to write correct programs • DSM

implementations use async message-passing, and hence cannot be more efficient than message-passing

implementations • By yielding control to DSM manager software, programmers cannot use their own message- passing

solutions.

Virtual memory does more than just make your computer’s memory go further. The memory management subsystem

provides: • Large Address Spaces • Protection • Memory Mapping • Fair Physical Memory Allocation • Shared Virtual

Memory

Threads can allocate and de-allocate blocks of memory, called Segments. These segments can be read and written and

can be mapped into and out of the address space of the process. A process owns at least one segment but may have

many more of them. Segments can be used for text, data, stack, or any other purpose the process desires. The operating

system does not enforce any particular pattern on segment usage.

16.7 Summary Let us sum up the different concepts we have studied till here. • A distributed computing system is a

collection of processors interconnected by a communication network in which each processor has its own local

memory and other peripherals and communication between any two processors of the system takes place by message

passing over the communication network. • A distributed system includes both a hardware aspect and a software aspect.

From a hardware point distributed systems are multi-computers and from a software view point they are distributed

operating systems or middleware. • A distributed operating system (DOS) is built, from the ground up, to provide

distributed services. • The message-passing is a common paradigm model for distributed computing, in the sense that it

mimics the behavior in human communications. • RPC makes the client/server model of computing more powerful and

easier to program. When combined with the ONC RPCGEN protocol compiler clients transparently make remote calls

through a local procedure interface. • DSM uses simpler software interfaces, and cheaper o_-the-shelf hardware. Hence

cheaper than dedicated multiprocessor systems

Self - Assessment Exercise 1. Explain the various reasons for designing applications in Distributed Processing system 2.

Explain the features of Concurrency Control in Distributed Computing Environment. 3. List down various application

areas where distributed computing is used

Unit 17: Distributed Computing System – An Introduction

17.1 Objective

This unit covers a new task execution strategy called “Distributed Computing” and the following related terminologies. •

Distributed Computing System (DCS) • Distributed Computing models • Advantages of Distributed computing • Security

130 of 210 5/3/2023, 10:31 AM

17.2 Introduction Distributed computing is a method of computer processing in which different parts of a program are

run simultaneously on two or more computers that are communicating with each other over a network. Distributed

computing is a type of segmented or parallel computing, but the latter term is most commonly used to refer to

processing in which different parts of a program run simultaneously on two or more processors that are part of the same

computer. While both types of processing require that a program be segmented—divided into sections that can run

simultaneously, distributed computing also requires that the division of the program take into account the different

environments on which the different sections of the program will be running. For example, two computers are likely to

have different file systems and different hardware components. An example of distributed computing is BOINC, a

framework in which large problems can be divided into many small problems which are distributed to many computers.

Later, the small results are reassembled into a larger solution. Distributed computing isa natural result of using networks

to enable computers to communicate efficiently. But distributed computing is distinct from computer networking or

fragmented computing. The latter refers to two or more computers interacting with each other, but not, typically, sharing

the processing of a single program. The World Wide Web is an example of a network, but not an example of distributed

computing. Advancements in microelectronic technology have resulted in the availability of fast, inexpensive processors,

and advancements in communication technology have resulted in the availability of cost-effective and highly efficient

computer networks. The net result of the advancements in these two technologies is that the price performance ratio

has now changed to favor the use of inter-connected, multiple processors in place of a single, high-speed processor.

17.1.1 Basic Multiprocessor Systems Two basic types of computer architectures consisting of interconnected, multiple

processors can be distinguished as 1. Tightly Coupled Systems - systems with

a single system wide primary memory (address space) that is shared by all the processors (

also referred to as parallel processing systems, multiprocessors, SMMP - shared memory multiprocessors, SMS - shared

memory systems, SMP – symmetric multiprocessors).

2. Loosely Coupled Systems - the systems where processors do not share memory and each processor has its own local

memory (also referred to as distributed computing systems, multicomputer, DMS- distributed memory systems, MPP –

massively parallel processors).

Local memory Local memory Local memory Local memory CPU CPU CPU CPU

Communication network

Let us see some points with respect to both tightly coupled multiprocessor systems and loosely coupled multiprocessor.

• Tightly coupled systems are referred to as parallel processing systems, and loosely coupled systems are referred to as

distributed computing systems, or simply distributed systems. • In case of tightly coupled systems, the processors of

distributed computing systems can be located far from each other to cover a wider geographical area. • In tightly

coupled systems, the number of processors that can be usefully deployed is usually small and limited by the bandwidth

of the shared memory. • The Distributed computing systems are more freely expandable and can have an almost

unlimited number of processors.

This has provided us with the basic idea of designing distributed operating systems. Although the field is still immature,

with ongoing active research activities, commercial distributed operating systems have already started to emerge. These

systems are based on already established basic concepts.

17.3 Distributed Computing System – An Outline It is a collection of independent computers (nodes, sites)

interconnected by transmission channels, that appear to the users of the system as a single computer. Each node of

distributed computing system is equipped with a processor, a local memory, and interfaces. Communication between

any pair of nodes is realized only by message passing as no common memory is available. Usually, distributed systems

are asynchronous, i.e., they do not use a common clock and do not impose any bounds on relative processor speeds or

message transfer times.

17.4 Evolution of Distributed Computing System Early computers were very expensive (they cost millions of dollars) and

very large in size (they occupied a big room). These computers were run from a console by an operator and were not

accessible to ordinary users. The job setup time was a real problem in early computers and wasted most of the valuable

central processing unit (CPU) time. To increase CPU utilization several new concepts were introduced in the 1950s and

1960s like the batching together of jobs with similar needs before processing them, automatic sequencing of jobs, off-

line processing by using the concepts of buffering and spooling and multiprogramming. Finally,

131 of 210 5/3/2023, 10:31 AM

71% MATCHING BLOCK 301/301 OS_Notes_Full.pdf (D108987417)

multiprogramming improved CPU utilization by organizing jobs so that the CPU always had something to execute.

78% MATCHING BLOCK 298/301

CPU utilization by organizing jobs so that the CPU always had something to execute.

78% MATCHING BLOCK 299/301

CPU utilization by organizing jobs so that the CPU always had something to execute.

However, none of these ideas allowed multiple users to directly interact with a computer system and to share its

resources simultaneously. It was not until the early 1970s that computers started to use the concept of time-sharing to

overcome this hurdle. Parallel advancements in hardware technology allowed reduction in the size and increase in the

processing speed of computers, causing large-sized computers to be gradually replaced by smaller and cheaper ones

that had more processing capability than their predecessors. The advent of time-sharing systems was the first step was

distributed computing systems because it provided us with two important concepts used in distributed computing

systems- • The sharing of computer resources simultaneously by many users • The accessing of computers from a place

different from the main computer room. However, in parallel, there were advancements in computer networking

technology in the late 1960s and early 1970s that emerged as two key networking technologies- • LAN (Local Area

Network): The LAN technology allowed several computers located within a building or a campus to be interconnected in

such a way that these machines could exchange information with each other at data rates of about 10 megabits per

second (Mbps). The first high- speed LAN was the Ethernet developed at Xerox PARC in 1973 • WAN Technology: allowed

computers located far from each other (may be in different cities or countries or continents) to be interconnected in a

such a way that these machines could exchange information with each other at data rates of about 56 kilobits per

second (Kbps). The first WAN was the ARPANET (Advanced Research Projects Agency Network) developed by the U.S.

Department of Defense in 1969. • ATM Technology: The data rates of networks continued to improve gradually in the

1980s providing data rates of up to 100 Mbps for LANs and data rates of up to 64 Kbps for WANs. Recently (early 1990s)

there have been another major advancements in networking technology – the ATM (Asynchronous Transfer Mode)

technology. The ATM technology is an emerging technology that is still not very well established. It will make very high

speed networking possible, providing data transmission rates up to 1.2 gigabits per second (Gbps) in both LAN and WAN

environments. The availability of such high-bandwidth networks will allow future distributed computing systems to

support a completely new class of distributed applications, called multimedia applications, that deal with the handling of

a mixture of information, including voice, video and ordinary data. The merging of computer and networking

technologies gave birth to Distributed computing systems in the late 1970s.

17.5 Distributed Computing System Models

Distribu ted System s

Various models are used for building distributed computing system. These models can be broadly classifies into five

categories-minicomputer, workstation, workstation-server, processor-pool and hybrid. They are briefly described below.

Distributed System Comparison of three Kinds of Multiple CPU Systems

17.4.1 Minicomputer Model Distributed computing system based on this model consists of a few minicomputers (or

supercomputers) interconnected by a communication network. Each minicomputer is connected by several interactiv3e

terminals. Each user is logged on to one specific minicomputer, with access to remote resources available on other

minicomputers. There is a simple extension of the centralized time sharing system. The example of distributed

computing system based on minicomputers is the early ARPA net.

Workstation Model (NOW - Network of Workstations, P2P - Peer-to Peer)

132 of 210 5/3/2023, 10:31 AM

General Characteristic: • System consists of several workstations interconnected by a communication network. • Every

workstation may be equipped with its own disk and serving as a single-user computer. • In such environment like

company‘s office or a university department, at any one time (especially at night), a significant portion of the workstation

are idle, resulting in the waste of large amount of CPU time. • Main idea: interconnect all workstations by a high-speed

LAN so that idle workstations may be used to process jobs of users who are logged onto other workstations and do not

have sufficient processing power at their own workstations to get their jobs processed efficiently. • User logs onto one of

the workstations and submits job for execution. • If the user‘s workstation does not have sufficient processing power for

executing the processes of the submitted job efficiently, it transfers one or more of the processes from the user‘s

workstation to some other workstation that is currently idle and gets the process executed there. • The result of

execution is returned to the user‘s workstation. • Implementation issues: • How does the system find an idle workstation?

• How is the process transferred from one workstation to get it executed on another workstation? • What happens to a

remote process if a user logs onto a workstation that was idle until now and was being executed a process of another

workstation? • Examples of distributed computing systems based on the workstation model: • Sprite system;

experimental system developed at Xerox PARC.

17.4.2 Workstation-Server Model System consists of a few minicomputers and several workstations (diskless or diskful)

interconnected by a communication network. In addition to the workstation, there are specialized machines running

server processes (servers) for managing and providing access to shared resources. Each minicomputer is used as a server

machine to provide one or more types of service: • implementing the file system; • database service; • print service; •

other types of service.

User logs onto a workstation called his home workstation. Normal computation activities required by the user‘s

processes are performed at the user‘s home workstation. Requests for services provided by special servers are sent to a

server providing that type of service that performs the user‘s requested activity and returns of requested processing to

the user‘s workstation. User‘s processes need not be migrated to the server machines for getting the work done by those

machines.

The workstation-server model has several advantages: 1. In general, it is much cheaper to use a few minicomputers

equipped with large, fast disk that are accessed over the network than a large number of diskful workstations, with each

workstation having a small, slow disk. 2. Diskless workstations are also preferred to diskful workstations from a system

maintenance point of view. Backup and hardware maintenance are easier to perform with a few large disks than with

many small disks scattered all over a building or campus. Furthermore, installing new releases of software (such as file

server with new functionalities) is easier when the software is to be installed on a few file server machines than on every

workstation. 3. In the workstation-server model, since the file servers manage all files, users have the flexibility to use any

workstation and access the files in the same manner irrespective of which workstation the user is currently logged on.

Note that this is not the true with the workstation model, in which the workstation model, in which each workstation has

its local file system, because different mechanisms are needed to access local and remote files. 4. In the workstation-

server model, the request-response protocol is mainly used to access the services of the server machines. Therefore,

unlike the workstation model, this model does not need a process migration facility, which is difficult to implement. The

request-response protocol is known as the client-server model of communication. In this model, a client process (which

in this case resides on a workstation) sends a request to server process (which in this case resides on a minicomputer) for

getting some services such as reading a unit of a file. The server executes the request and sends back a reply to the client

that contains the result of processing. 5. A user has guaranteed response time because workstations are not used for

executing remote processes. However, the model does not utilize the processing capability of idle workstations.

17.4.3 Processor-Pool Model

133 of 210 5/3/2023, 10:31 AM

The model is based on the observation that most of the time a user does not need any computer power but once in a

while he may need a very large amount of computing power for a short time. • The processors are pooled together to be

shared by the users as needed. • The pool of processors consists of a large number of microcomputers and

minicomputers attached to the network. • Each processor in the pool has its own memory to load and run a system

program or an application program. • The processors in the pool have not terminals attached directly to them, and users

access the system from terminals that are attached to the network via special devices. • A special server (run server)

manages and allocates the processors in the pool to different users on a demand basis. • Appropriate number of

processors are temporary assigned to user‘s job by the run server. • When the computation is completed, the processors

are returned to the pool. When a user submits a job for computation, the run server temporarily assigns an appropriate

number of processors to his or her job. For example, if the user’s computation job is the compilation of a program having

n segments, in which each of the segments can be compiled independently to produce separate relocatable object files,

n processors from the pool can be allocated to this job to compile all the n segments in parallel. When the computation

is completed, the processors are returned to the pool for use by other users. In the processor-pool model there is no

concept of a home machines. That is, a user does not log onto a particular machine but to the system as a whole. This is

in contrast to other models in which each user has a home machine (e.g., a workstation or minicomputer) onto which he

or she logs and runs most of his or her programs there by default. Amoeba and the Cambridge Distributed Computing

Systems are examples of distributed computing systems based on the processor-pool model.

17.6 Security in Distributed Environment Computing security is, at its core, more than a technical issue: It’s a fundamental

business challenge. Managers have plenty of security alternatives, but little real guidance on making intelligent decisions

about them. And today’s distributed, multivendor, Internet-connected environments encompass more insecure systems

and networks than ever before. Security in these systems is multilayered and can be tailored to meet company and user-

specific needs Security in Distributed Computing offers the manager of distributed systems a thorough, common- sense

framework for cost-effective computer security. Security Policy determines precisely which actions the entities in a

system are allowed to take and which ones are prohibited. The security policy can be enforced by following techniques:

ENCRYPTION: Transforming data into coded text that an attacker cannot understand. AUTHENTICATION: Verifying the

claimed identity of different entities. AUTHORIZATION: Verifying whether the client is allowed to perform the requested

service.. AUDITING: Tracing each and every client’s activity. The security in distributed systems requires use of a unique,

assigned login name for each user. This name must be used in conjunction with the system provided or created

password unique to the username to gain access. The security protocol of distributed systems requires it check the login

name and password against its files along with the access point to authenticate login. The system is unique in that it can

accomplish this without an active server. Each user has a personally constructed security profile. This profile only allows

them access to certain areas of the files and programs located within the distributed system. This security protocol helps

to keep information confidential by only allowing limited access.

17.5.1 Architecture Various hardware and software architectures are used for distributed computing. At a lower level, it is

necessary to interconnect multiple CPUs with some sort of network, regardless of whether that network is printed onto a

circuit board or made up of loosely coupled devices and cables. At a higher level, it is necessary to interconnect

processes running on those CPUs with some sort of communication system. Distributed programming typically falls into

one of several basic architectures or categories: Client-server, 3-tier architecture, N-tier architecture, Distributed objects,

loose coupling, or tight coupling. • Client-server Smart client code contacts the server for data, then formats and displays

it to the user. Input at the client is committed back to the server when it represents a permanent change. • 3-tier

architecture Three tier systems move the client intelligence to a middle tier so that stateless clients can be used. This

simplifies application deployment. Most web applications are 3- Tier. • N-tier architecture N-Tier refers typically to web

applications which further forward their requests to other enterprise services. This type of application is the one most

responsible for the success of application servers. • Tightly coupled (clustered) refers typically to a set of highly integrated

machines that run the same process in parallel, subdividing the task in parts that are made individually by each one, and

then put back together to make the final result. • Peer-to-peer an architecture where there is no special machine or

machines that provide a service or manage the network resources. Instead, all responsibilities are uniformly divided

among all machines, known as peers. Peers can serve both as clients and servers.

• Space based refers to an infrastructure that creates the illusion (virtualization) of one single address-space. Data are

transparently replicated according to application needs. Decoupling in time, space and reference is achieved.

134 of 210 5/3/2023, 10:31 AM

Another basic aspect of distributed computing architecture is the method of communicating and coordinating work

among concurrent processes. Through various message passing protocols, processes may communicate directly with

one another, typically in a master/slave relationship. Alternatively, a “database-centric” architecture can enable distributed

computing to be done without any form of direct inter-process communication, by utilizing a shared database.

17.7 Advantages of Distributed System Over Centralized System The distributed computing systems are much more

complex and difficult to build than traditional centralized systems (those consisting of a single CPU, its memory,

peripherals, and one or more terminals). The increased complexity is mainly due to the fact that in addition to being

capable of effectively using and managing a very large number of distributed resources, the system software of a

distributed computing system should also be capable of handling the communication and security problems that are

very different from those of centralized systems. For example, the performance and reliability of a distributed computing

system depends to a great extent on the performance and reliability of the underlying communication network. Special

software is usually needed to handle loss of messages, during transmission across the network or to prevent overloading

of the network that degrades the performance and responsiveness to the users. Similarly, special software security

measures are needed to protect the widely distributed shared resources and services against intentional or accidental

violation of access control and privacy constraints. Despite the increased complexity and the difficulty of building

distributed computing systems, the installation and use of distributed computing systems overweigh their disadvantages.

The technical needs, the economic pressures, and the major advantages that have led to the emergence and popularity

of distributed computing systems are described here.

• Inherently Distributed Applications: Distributed computing systems come into existence in some very natural easy. For

example, several applications are inherently distributed in nature and require a distributed computing system for their

realization. For instance, in an employee database of a nationwide organization, the data pertaining to a particular

employee are generated at the employee’s branch office, and in addition to the global need to view the entire database;

there is a local need for frequent and immediate access to locally generated data at each branch office. Such

applications require that some processing power be available at the many distributed locations for collecting,

preprocessing, and accessing data, resulting in the need for distributed application are a computerized worldwide airline

reservation system, a computerized banking system in which a customer can deposit/withdraw money from his or her

account from any branch of the bank, and a factory automation system controlling robots and machines all along an

assembly line.

• Information Sharing Among Distributed Users: Efficient person-to-person communication facility by sharing

information over great distances is the one more advantage. In a distributed computing system, the users working at

other nodes of the system can easily and efficiently share information generated by one of the users. This facility may be

useful in many ways. For example, two or more users who are geographically far off from each other can perform a

project but whose computers are the parts of the same distributed computing system. The use of distributed computing

systems by a group of users to work cooperatively is known as computer-supported cooperative working (CSCW), or

groupware.

• Resource Sharing: Information is not the only thing that can be shared in a distributed computing system. Sharing of

software resources such as software libraries and databases as well as hardware resources such as printers, hard disks,

and plotters can also be done in a very effective way among all the computers and users of a single distributed

computing system

• Better Price Performance Ration: This is one of the most important reasons for the growing popularity of distributed

computing system. With the rapidly increasing power and reduction in the price of microprocessors, combined with the

increasing speed of communication networks, distributed computing systems potentially have a much better price-

performance ratio than a single large centralized system. Another reason for distributed computing systems to be more

cost effective than centralized systems is that they facilitate resource sharing among multiple computers.

• Shorter Response Times and Higher Throughput: Due to multiplicity of processors, distributed computing systems are

expected to have better performance than single-processor centralized systems. The two most commonly used

performance metrics are response time and throughput of user processes. That is, the multiple processors of distributed

computing systems can be utilized properly for providing shorter response times and higher throughput than a single

processor centralized system. Another method often used in distributed computing systems for achieving better overall

performance is to distribute the load more evenly among the multiple processors by moving jobs from currently

overloaded processors to lightly loaded ones.

135 of 210 5/3/2023, 10:31 AM

• Higher Reliability: Reliability refers to the degree of tolerance against errors and component failures in a system. A

reliable system prevents loss of information even in the event of component failures. The multiplicity of storage devices

and processors in a distributed computing system allows the maintenance of multiple copies of critical information

within the system. With this approach, if one of the processors fails, the computation can be successfully completed at

the other processor, and if one of the storage devices fails, the computations can be successfully completed at the other

processors, and if one of the storage devices fails, the information can still be used from the other storage device.

• Availability: An important aspect of reliability is availability, which refers to the fraction of time for which a system is

available for use. In comparison to a centralized system, a distributed computing system also enjoys the advantage of

increased availability.

• Extensibility and Incremental Growth: Another major advantage of distributed computing systems is that they are

capable of incremental growth. That is, it is possible to gradually extend the power and functionality of a distributed

computing system by simply adding additional resources (both hardware and software) to the system as and when the

need arises. For example, additional processors can be easily added to the system to handle the increased workload of

an organization that might have resulted from its expansion. Extensibility is also easier on a distributed computing system

because addition of new resources to an existing system can be performed without significant disruption of the normal

functioning of the system. Properly designed distributed computing systems that have the property of extensibility and

incremental growth are called open distributed systems.

• Better Flexibility in Meeting User’s Needs: Different types of computers are usually more suitable for performing

different types of computations. For example, computers with ordinary power are suitable for ordinary data processing

jobs, whereas high-performance computers are more suitable for complex mathematical computations. In a centralized

system, the users have to perform all types of computations on the only available computer.

17.8 Disadvantages of Distributed System Over Centralized System Technical Issues If not planned properly, a distributed

system can decrease the overall reliability of computations if the unavailability of a node can cause disruption of the

other nodes. Leslie Lamport famously quipped that: “A distributed system is one in which the failure of a computer you

didn’t even know existed can render your own computer unusable.” Troubleshooting and diagnosing problems in a

distributed system can also become more difficult, because the analysis may require connecting to remote nodes or

inspecting communication between nodes. Many types of computation are not well suited for distributed environments,

typically owing to the amount of network communication or synchronization that would be required between nodes. If

bandwidth, latency, or communication requirements are too significant, then the benefits of distributed computing may

be negated, and the performance may be worse than a non-distributed environment.

Project-related Problems Distributed computing projects may generate data that is proprietary to private industry, even

though the process of generating that data involves the resources of volunteers. This may result in controversy as private

industry profits from the data which is generated with the aid of volunteers. In addition, some distributed computing

projects, such as biology projects that aim to develop thousands or millions of “candidate molecules” for solving various

medical problems, may create vast amounts of raw data. This raw data may be useless by itself without refinement of the

raw data or testing of candidate results in real-world experiments. Such refinement and experimentation may be so

expensive and time-consuming that it may literally take decades to sift through the data. Until the data is refined, no

benefits can be acquired from the computing work. Other projects suffer from lack of planning on behalf of their well-

meaning originators. These poorly planned projects may not generate results that are palpable or may not generate data

that ultimately result in finished, innovative scientific papers. Sensing that a project may not be generating useful data, the

project managers may decide to abruptly terminate the project without definitive results, resulting in wastage of the

electricity and computing resources used in the project. Volunteers may feel disappointed and abused by such

outcomes. There is an obvious opportunity cost of devoting time and energy to a project that ultimately is useless, when

that computing power could have been devoted to a better planned distributed computing project generating useful,

concrete results. Another problem with distributed computing projects is that they may devote resources to problems

that may not ultimately be soluble, or to problems that are best pursued later in the future, when desktop computing

power becomes fast enough to make pursuit of such solutions practical. Some distributed computing projects may also

attempt to use computers to find solutions by number-crunching mathematical or physical models. With such projects

there is the risk that the model may not be designed well enough to efficiently generate concrete solutions. The

effectiveness of a distributed computing project is therefore determined largely by the sophistication of the project

creators.

136 of 210 5/3/2023, 10:31 AM

17.7.1 Network Operating Systems There are two Types of Distributed operating systems: • Network Operating Systems •

Distributed Operating Systems

In the Network operating systems Users are aware of multiplicity of machines. User’s access to resources of various

machines is done explicitly by: • Remote logging into the appropriate remote machine (telnet, ssh) • Remote Desktop

(Microsoft Windows) • Transferring data from remote machines to local machines, via the File Transfer Protocol (FTP)

mechanism

17.9 Issues in Designing a Distributed Operating System In general, designing operating system is more difficult than

designing a centralized operating system for several reasons. In the design of a centralized operating system, it is

assumed that the operating system has access to complete and accurate information about the environment in which it

is functioning. In a distributed system, the resources are physically separated, there is no common clock among the

multiple processors, delivery of messages is delayed, and messages could even be lost. Due to all these reasons, a

distributed operating system doest not have up-to-data, consistent knowledge about the state of the various

components of the underlying distributed system. Despite these complexities and difficulties, a distributed operating

system must be designed to provide all the advantage of a distributed system to its users. That is, the users should be

able to view a distributed system as virtual centralized system that is flexible, efficient, reliable, secure and easy to use. To

meet this requirement, the designers of a distributed operating system must deal with several design issues. Some of the

key design issues are described below. • Transparency: We saw that one of the main goals of a distributed operating

system is to make the existence of multiple computers invisible (transparent) and provide a single system image to its

users. That is, a distributed operating system must be designed in such a way that a collection of distinct machines

connected by a communication subsystem appears to its users as a virtual uniprocessor. The eight forms of transparency

identified by the International Standards Organization’s Reference Model for Open Distributed Processing [ISO 1992] are

access transparency, location transparency, replication transparency, failure transparency, migration transparency,

location transparency, concurrency transparency performance transparency, and scaling transparency.

• Reliability: In general, distributed systems are expected to be more reliable than centralized systems due to the

existence of multiple instances of resources. However, the existence of multiple instances of the resources alone cannot

increase the systems reliability. Rather, the distributed operating system, which manages these resources, must be

designed properly to increase the systems reliability by taking full advantage of this characteristic feature of a distributed

system. For higher reliability, the fault-handling mechanisms of a distributed operating system must be designed properly

to avoid faults, to tolerate faults, and to detect and recover from faults. Commonly used methods for dealing with these

issues are briefly described here. • Flexibility: Another important issue in the design of distributed operating systems is

flexibility. The design of a distributed operating system should be flexible due to the following reasons: • Ease of

modification: From the experience of system designers, it has been found that some parts of the design often need to be

replaced/modified either because some bug is detected in the design or because the design is no longer suitable for the

changed system environment or new-user requirements. Therefore, it should be easy to incorporate changes in the

system in a user-transparent manner or with minimum interruption caused to the users. • Ease of enhancement: In every

system, new functionalities have to be added from time to time to make it more powerful and easy to use. Therefore, it

should be easy to add new services to the system. The most important design factor that influences the flexibility of a

distributed operating system is the model used for designing its kernel. The kernel of an operating system is its central

controlling part that provided basic system facilities. It operates in a separate address space that a user cannot replace or

modify. The two commonly used models for kernels design in distributed operating systems are monolithic kernel and

the micro kernel. • In monolithic kernel model, the kernel provides most operating system services such as process

management, and inter-process communication. As a result, the kernel has a large, monolithic structure. Many

distributed operating systems that are extensions or imitations of the UNIX operating system use the monolithic kernel

model. This is mainly because UNIX itself has a large, monolithic kernel. • In the micro kernel model, the main goal is to

keep the kernel as small as possible. Therefore, in this model, the kernel is a very small nucleus of software that provides

only the minimal facilities necessary for implementing additional operating system services. The only services provided

by the kernel in this model are inter-process communication, low–level device management and some memory

management. All other operating system services, such as file-management, name management, additional process and

memory management activities, and much system call handling are implemented as a user-level server processes.

Fig 17.6(a) The Monolithic Kernel Model

137 of 210 5/3/2023, 10:31 AM

• Performance: If a distributed system is to be used, its performance must be at least as good as a centralized system.

That is, when a particular application is run on a distributed system, its overall performance should be better than or at

least equal to that of running the same applications on a single-processor system. However, to achieve this goal, it is

important that the various components of the operating system of a distributed system be designed properly; otherwise,

the overall performance of the distributed system may turn out to be worse than a centralized system. • Scalability:

Scalability refers to

the capability of a system to adapt to increased service load.

It is inevitable that a distributed system will grow with time since it is very common to add new machines or an entire

sub-network to the system to take care of increased workload or organizational changes in a company. Therefore, a

distributed operating system should be designed to easily cope with the growth of nodes and users in the system. That is,

such growth should not cause serious disruption of service or significant loss of performance to users. • Heterogeneity: A

heterogeneous distributed system consists of interconnected sets of dissimilar hardware or software systems. Because of

the diversity, designing heterogeneous distributed systems is far more difficult than designing homogenous distributed

systems in which each system is based on the same, or closely related, hardware and software. However, as a

consequence of large scale, heterogeneity is often inevitable in distributed systems. Furthermore, many users prefer

often heterogeneity because heterogeneous distributed systems provide the flexibility to their users of different

computer platforms for different applications. • Security: In order that the users can trust the system and rely on it, the

various resources of a computer system must be protected against destruction and unauthorized access. Enforcing

security in a distributed system is more difficult than in a centralized system because of the lack of a single point of

control and the use of insecure networks for data communication. In a centralized system, all users are authenticated by

the system at login time, and the system can easily check whether a user is authorized to perform the requested

operation on an accessed resource. In a distributed system, however, since the client-server model is often used for

requesting and providing services, when a client sends a request message to a server, the server must have some way of

knowing who is the client. This is not so simple as it might appear because any client identification field in the message

cannot be trusted. This is because an intruder (a person or program trying to obtain unauthorized access to system

resources) may pretend to be an authorized client or may change the message contents during transmission. Therefore,

as compared to a centralized system, enforcement of security in a distributed system has the following additional

requirements: 1. It should be possible for the sender of a message to know that the intended receiver received the

message. 2 It should be possible for receiver of a message to know that the message was sent by the genuine sender 3. It

should be possible for both the sender and receiver of a message to be guaranteed that the contents of the message

were not changed while it was in transfer. • Emulation of Existing Operating Systems: For commercial success, it is

important that a newly designed distributed operating system be able to emulate existing poplar operating systems such

as UNIX. With this property, new software can be written using the system call interface of the new operating system to

take full advantage of its special features of distribution, but a vast amount to already existing old software can also be

run on the same system without the need to rewrite them. Therefore, moving to the new distributed operating system

will allow both types of software to be run side by side.

17.10 Summary Let us sum up the different concepts we have studied till here. • The existing models for distributed

computing systems can be broadly classified into five categories, minicomputer, workstation-server, processor-pool and

hybrid. • Distributed computing system is much more complex and difficult to build than the traditional centralized

systems. Despite the increased complexity and the difficulty of buildings, the installation and the use of distributed

computing system are rapidly increasing. This is mainly because the advantages of distributed computing systems

outweigh its disadvantages. • The main advantages of distributed computing systems are (a) suitability for inherently

distributed applications. (b) Sharing of information among distributed users and sharing of resources (d) better price

performance ratio (e) shorter response times and higher throughout (f) higher reliability (g) extensibility and incremental

growth and (h) better flexibility in meeting user’s needs. • The operating systems commonly used for distributed

computing systems can be broadly classified into two types: network operating systems and distributed operating

systems. As compared to a network operating system, a distributed operating system has better transparency and fault

capability and provides the image of a virtual uniprocessor to the users. • The main issue involved in the design of a

distributed operating system is transparency, reliability, flexibility, performance, scalability, heterogeneity, security and

emulation of existing operating systems.

138 of 210 5/3/2023, 10:31 AM

Self - Assessment Exercise 1. Differentiate between Centralised approach and Fully Distributed Approach 2. Identify the

disadvantages of distributed approach in comparison to Centralised approach. 3. What are the main issues involve in the

design of a distributed system? 4. Explain the different models of Distributed Computing. 5. What are the security issues

related to a system with distributed approach?

Unit 18: Distributed File System

18.1

Objective

This unit covers following aspects: • Features of Good Distributed File System • File Models & File Accessing Models •

File- Sharing Semantics • System Design Issue & Design Principle

18.2 Introduction

A file system is responsible for the organization, storage, retrieval, naming, sharing, and protection of files.

A Distributed File System is a network file system where a single file system can be distributed across several physical

computer nodes. Separate nodes have direct access to only a part of the entire file system, in contrast to shared disk file

systems where all nodes have uniform direct access to the entire storage. Example: Google file system, CODA, Hadoop.

Figure 18.1: Distributed File System

18.3 Features of Good DFS 1) Fault tolerance: Distributed storage is composed of a large number of distributed storage

components (rather than a single storage component). Increasing the number of components affects fault tolerance.

Distributing the components makes the system more faults prone (because of network disruptions). 2)

Scalability: The file system should work well in small environments (1 machine, a dozen machines) and also scale

gracefully to huge ones (hundreds through tens of thousands of systems). 3) Transparency:

The distributed systems should be perceived as a single entity by the users or the application programmers rather than as

a collection of autonomous systems, which are cooperating. The users should be unaware of where the services are

located and also the transferring from a local machine to a remote one should also be transparent. a.

Access transparency Clients are unaware that files are distributed and can access them in the same way as local files are

accessed.

b.

Location transparency A consistent name space exists encompassing local as well as remote files. The name of a file

does not give it location. c. Concurrency transparency All clients have the same view of the state of the file system. This

means that if one process is modifying a file, any other processes on the same system or remote systems that are

accessing the files will see the modifications in a coherent manner. d. Failure transparency The client and client programs

should operate correctly after a server failure.

e.

Heterogeneity File service should be provided across different hardware and operating system platforms.

f. Replication transparency To support scalability, we may wish to replicate files across multiple servers. Clients should be

unaware of this. g.

Migration transparency Files should be able to move around without the client’s knowledge.

Other Characteristics Include 1) Network Transparency: Same access operation as if they are local files. 2) Location

Independence: The file name should not be changed when the physical location of the file changes. 3) User Mobility:

User should be able to access the file from anywhere. 4) File Mobility: Moves files from one place to the other in a

running system.

18.4 File models & File Accessing Models 18.4.1 Distributed File System Concepts

A file service is a specification of what the file system offers to clients. A file server is the implementation of a file service

and runs on one or more machines. A file itself contains a name, data, and attributes (such as owner, size, creation time,

access rights). An immutable file is one that, once created, cannot be changed. Immutable files are easy to cache and to

replicate across servers since their contents are guaranteed to remain unchanged. Two forms of protection are generally

used in distributed file systems, and they are essentially the same techniques that are used in single-processor non-

networked systems:

Capabilities Each user is granted a ticket (capability) from some trusted source for each object to which it has access. The

capability specifies what kinds of access are allowed.

Access Control Lists Each file has a list of users associated with it and access permissions per user. Multiple users may be

organized into an entity known as a group.

139 of 210 5/3/2023, 10:31 AM

18.4.2

File Service Types To provide a remote system with file service, we will have to select one of

two models of operation. One of these is the upload/download model. In this model, there are two fundamental

operations: read file transfers an entire file from the server to the requesting client and write file copies the file back to

the server. It is a simple model and efficient in that it provides local access to the file when it is being used. Three

problems are evident. It can be wasteful if the client needs access to only a small amount of the file data. It can be

problematic if the client doesn’t have enough space to cache the entire file.

Finally, what happens if others need to modify the same file?

The second model is a remote access model. The file service provides remote operations such as open, close, read

bytes, write bytes, get attributes, etc. The file system itself runs on servers. The drawback in this approach is the servers

are accessed for the duration of file access rather than once to download the file and again to upload it.

Another important distinction in providing file service is that of understanding the difference between directory service

and file service. A directory service, in the context of file systems, maps human-friendly textual names for files to their

internal locations, which can be used by the file service. The file service itself provides the file interface (this is mentioned

above). Another component of file distributed file systems is the client module. This is the client-side interface for file and

directory service. It provides a local file system interface to client software (for example, the vnode file system layer of a

UNIX kernel).

18.4.3 Naming Issues

In designing a distributed file service, we should consider whether all machines (and processes) should have the exact

same view of the directory hierarchy.

We might also wish to consider

whether the name space on all machines should have a global root directory (

a.k.a.

super root) so that files can be accessed as, for example, //server/path. This is a model that was adopted by the Apollo

Domain System, an early distributed file system, and more recently by the web community in the construction of a

uniform resource locator (URL). In considering our goals in name resolution, we must distinguish between location

transparency and location independence. By location transparency we mean that the path name of a file gives no hint to

where the file is located. For instance, we may refer to a file as //server1/dir/file. The server (

server) can move anywhere without the client caring, so we have location transparency. However, if the file moves to

server2 things will not work. If we have location independence, the files can be moved without their names changing.

Hence, if machine or server names are embedded into path names, we do not achieve location independence. It is

desirable to have access transparency, so that applications and users can access remote files just as they access local

files. To facilitate this, the remote file system name space should be syntactically consistent with the local name space.

One way of accomplishing this is by redefining the way files are named and require an explicit syntax for identifying

remote files. This can cause legacy applications to fail and user discontent (users will have to learn a new way of naming

their files). An alternate solution is to use a file system mounting mechanism to overlay portions of another file system

over a node in a local directory structure. Mounting is used in the local environment to construct a uniform name space

from separate file systems (which reside on different disks or partitions) as well as incorporating special-purpose file

systems into the name space (e.g., /proc on many UNIX systems allows file system access to processes). A remote file

system can be mounted at a particular point in the local directory tree. Attempts to access files and directories under that

node will be directed to the driver for that file system. To summarize, our naming options are: • machine and path

naming (machine: path, ./machine/path). • mount remote file systems onto the local directory hierarchy (merging the

two-name spaces). • provide a single name space which looks the same on all machines. The first two of these options

are relatively easy to implement.

Types of Names When

we talk about file names, we refer

140 of 210 5/3/2023, 10:31 AM

to symbolic names (for example, server.c). These names are used by people (users or programmers) to refer to files.

Another “name” is the identifier used by the system internally to refer to a file. We can think of this as a binary name

(more precisely, as an address). On most UNIX file systems, this would be the device number and inode number. On MS-

DOS systems, this would be the drive letter and FAT index. Directories provide a mapping from symbolic names to file

addresses (binary names). Typically, one symbolic name maps to one file address. If multiple symbolic names map onto

one binary name, these are called hard links. On inode-based file systems (e.g., most UNIX systems), hard links must exist

within the same device since the address (inode) is unique only on that device. On MS-DOS systems, they are not

supported because file attributes are stored with the name of the file. Having two symbolic names refer to the same data

will cause problems in synchronizing file attributes (how would you locate other files that point to this data?).

A hack

to allow multiple names to refer to the same file (whether its on the same device or a different device) is to have the

symbolic name refer to a single file address but that file may have an attribute to tell the system that its contents contain

a symbolic file name that should be dereferenced. Essentially, this adds a level of indirection: access a file which contains

another file name, which references the file attributes and data. These files are known as symbolic links. Finally, it is

possible for one symbolic name to refer to multiple file addresses. This doesn’t make much sense on a local system1 but

can be useful on a networked file system to provide fault tolerance or enable the system to use the file address which is

most efficient. 18.5 File-

Sharing Semantics The analysis of file sharing semantics is that of understanding how files behave. For instance, on most

systems, if a read follows a write, the read of that location will return the values just written. If two writes occur in

succession, the following read will return the results of the last write. File systems that behave this way are said to

observe sequential semantics. Sequential semantics can be achieved in a distributed system if there is only one server

and clients do not cache data. This can cause performance problems since clients will be going to the server for every

file operation (such as single-byte reads). The performance problems can be alleviated with client caching. However,

now if the client modifies its cache and another client reads data from the server, it will get obsolete data. Sequential

semantics no longer hold. One solution is to make all the writes write-through to the server. This is inefficient and does

not solve the problem of clients having invalid copies in their cache. To solve this, the server would have to notify all

clients holding copies of the data. Another solution is to relax the semantics. We will simply tell the users that things do

not work the same way on the distributed file system as they did on the local file system. The new rule can be “changes

to an open file are initially visible only to the process (or machine) that modified it.” These are known as session

semantics. Yet another solution is to make all the files immutable2. That is, a file cannot be open for modification, only

for reading or creating. If we need to modify a file, we’ll create a completely new file under the old name. Immutable files

are an aid to replication, but they do not help with changes to the file’s contents (or, more precisely, that the old file is

obsolete because a new one with modified contents succeeded it). We still have to contend with the issue that there may

be another process reading the old file. It’s possible to detect that a file has changed and start failing requests from other

processes. A final alternative is to use atomic transactions. To access a file or a group of files, a process first executes a

begin transaction primitive to signal that all future operations will be executed indivisibly. When the work is completed,

an end transaction primitive is executed. If two or more transactions start at the same time, the system ensures that the

end result is as if they were run in some sequential order. All changes have an all or nothing property.

18.6 System Design Issue 18.6.1 Name Resolution In looking up the pathname of a file (e.g., via the namei function in the

UNIX kernel), we may choose to evaluate a pathname a component at a time. For example, for a pathname aaa/bbb/ccc,

we would perform a remote lookup of aaa, then another one of bbb, and finally one of ccc). Alternatively, we may pass

the rest of the pathname to the remote machine as one lookup request once we find that a component is remote. The

drawback of the latter scheme is a) The remote server may be asked to walk up the tree by processing .. (parent node)

components and reveal more of its file system than it wants and b) Other components cannot be mounted underneath

the remote tree on the local system. Because of this, component at a time evaluation is generally favored but it has

performance problems (a lot more messages). We may choose to keep a local cache of component resolutions.

141 of 210 5/3/2023, 10:31 AM

18.6.2 Should Servers Maintain State? This issue is a topic of passionate debate. A stateless system is one in which the

client sends a request to a server, the server carries it out, and returns the result. Between these requests, no client-

specific information is stored on the server. A stateful system is one where information about client connections is

maintained on the server. In a stateless system: • Each request must be complete – the file has to be fully identified and

any offsets specified. • Fault tolerance: if a server crashes and then recovers, no state was lost about client connections

because there was no state to maintain. • No remote open/close calls are needed (they only serve to establish state). •

No wasted server space per client. • No limit on the number of open files on the server; they aren’t “open” – the server

maintains no per- client state. • No problems if the client crashes. The server does not have any state to clean up. On a

stateful system: • requests are shorter (less info to send). • better performance in processing the requests. • idempotency

works; cache coherence is possible. • file locking is possible; the server can keep state that a certain client is locking a file

(or portion thereof)

18.6.3 File Caching Schemes We can employ caching to improve system performance. There are four places in a

distributed system where we can hold data: 1. on the server’s disk 2. in a cache in the server’s memory 3. in the client’s

memory 4. on the client’s disk

The first two places are not an issue since any interface to the server can check the centralized cache. It is in the last two

places that problems arise, and we have to consider the issue of cache consistency. Several approaches may be taken:

write-through What if another client reads its own cached copy? All accesses would require checking with the server first

(adds network congestion) or require the server to maintain state on who has what files cached. Write-through also does

not alleviate congestion on writes. delayed writes Data can be buffered locally (where consistency suffers) but files can

be updated periodically. A single bulk write is far more efficient than lots of little writes every time any file contents are

modified. Unfortunately, the semantics become ambiguous.

Write on Close This is admitting that the file system uses session semantics.

Centralized Control Server keeps track of who has what open in which mode. We would have to support a stateful

system and deal with signaling traffic.

18.6.4 Fault Tolerance In brief, we can say that in a computational system data are processed to produce information.

Once produced, usually this information are stored in a media by the file system for further accesses Their necessity of

being accessible implies to provide safe mechanisms for storing and accessing data/information which claims fault

tolerance issues. Besides, in distributed file systems, not only local failures (e.g., due storage devices) should be dealt

with, but also other failures inherent to the distributed environment. Following, we address some issues that are strict

related with fault tolerance in distributed ule systems.

Stateful and Stateless Services To better understand how fault tolerance can be employed in a distributed file system, it is

useful to understand how the services are provided. Distributed file systems services can be implemented by using two

different service designs: stateful service or stateless service. These paradigms have contradictory concepts; however

both supply the file operations.

Stateful Service In this type of service, information about file operations is kept in the server during all the file session. A

communication channel is established between the client and the server when the client explicitly solicits the file

opening. A number (identifier) is used to define the communication channel then this identifier will be used to perform

file operations. To attend its clients, the server copies data from the storage devices to memory and let them there till the

file closing.

142 of 210 5/3/2023, 10:31 AM

Stateless Service On the other hand, the stateless service does not establish a communication channel. Moreover, there

is no necessity for explicit file opening and closing: before executing a file operation the server will automatically open

and close the file. Each request sent to the server must define the desired file likewise, if a read or write operation is

requested, it must contain the position in the file referring to the respective operation. The usage of the main memory

can improve performance whereas memory access is faster than disk one. The memory can be used for caching in the

stateless service but its usage is not obligatory as in stateful service. As a result to this, stateful service presents an

advantage when compared to the stateless one. On the contrary, the advantage of using the main memory becomes a

disadvantage with respect to the fault tolerance context. If the server crashes, information stored in memory will

probably be lost or at least harder to be recovered. The consequences of servers and clients failures will depend of the

used service. If a stateless server crashes, the previous file sessions will not be disturbed. On the other hand, if the server

crashes in a stateful service, it should be able to recover the file session state, likewise it has inconveniences as

mentioned earlier. Focusing on the client failures, in a stateful service the server should be able to realize when it

happens to free the allocated memory. On the contrary, stateless service servers do not need to handle client faults.

However, stateless service clients can experience a situation in which they cannot distinguish a slow server from a

recovering one. Finally, we can also compare both approaches referring to service overhead. Due to the communication

channel established on the stateful service its overhead is significant lower than the stateless service. The reason is that in

a stateful service it is not necessary to send details about the file operation each time a request is sent. Additionally, such

a service can be understood as a centralized and coupled service. In contrast, a stateless service is decentralized and

decoupled that delegates service tasks to clients. The great decentralized participation of clients in stateless service

allows to better providing fault tolerance mechanisms once it is possible to avoid single points of failures.

18.6.5 File Replication In distributed systems, replication techniques can be employed with different goals. Targeting

consistency, for example, replication is useful for performance issues, e.g., accessing data at the same time or accessing

the data copy whose network communication has a low latency. Replication can also be used for availability and fault

tolerance. moreover, replication means file replication in distributed file system on text. Furthermore, replication

mechanisms should keep replicas consistent even if they are used to provide fault tolerance. It implies a fault tolerance

trade-off between consistency and performance. The techniques used in replication should choose one of these

characteristics to prioritize. • Consistency vs. Performance. When a client performs a file operation the file changes have

to be updated to all its replicas. Consistency protocols manage them, providing atomicity to replica updates. In other

words, these protocols ensure that all replicas of a file will correspond to the last change done in it. To achieve this,

consistency protocols must avoid that clients open outdated replicas. This task is not trivial for distributed file systems

that deal with mutable data (files). By that very fact, such protocols increase the system overhead which can degrade

system performance. Consequently, the harder the consistency protocol is, the lower the performance that the system

will acquire. • File Replication Location. Another interesting aspect of file replication is the place where it will be

replicated. Basically, it is possible to explore two approaches. The first one relies on replicating them on the same

machine - be replicas on the same storage device or on different ones. This approach can profit a RAID scheme if relied

on different medias (hard disks). In opposition, the second approach concerns replicas in different machines likewise

using the network infrastructure to manage them.

It is important to remember that despite the approach chosen, clients should not care about file replication, i.e., it should

be transparent for them. However, details about file replication (e.g., number of replicas) can be exposed to clients if the

distributed file system allows them to tune it by themselves. Yet, there is the possibility to provide a hybrid approach that

relies on file replication on different machines and also taking advantage of different Medias (in some servers or in all of

them). This scenario may increase the system throughput however, if well-tuned, it can offer an environment to build

robust fault tolerance services without degrading the system performance. Moreover, fault tolerance consistency

protocols could improve their performance when relying on this hybrid approach. Fault tolerant mechanisms would

profit from different machines to avoid single points of failure and the consistency protocol could be better performed

relying on faster accesses to local storage devices.

18.7 Design Principle: Andrew File System (AFS) AFS was developed in the late 80s at CMU. It uses the following design

principles: 1. Callbacks: The server records that has the copy of a file. 2. Write-back cache on file close: If a file is

modified, the update is propagated to server when the file is closed. The server then immediately tells all clients who own

an old copy. 3. Files are cached on each client’s disk. NFS caches only in clients’ memory. 4. Session semantics: Updates

are only visible on close.

143 of 210 5/3/2023, 10:31 AM

In UNIX (single machine), updates are visible immediately to other processes that have the file open. In AFS, everyone

who has the file open sees the old version; anyone who opens the file again will see the new version.

Figure 18.6: AFS Process

When a client opens a file and the file is not on the local disk, the client gets the file from the server and adds itself on the

callback list. When a client closes a file, the client sends the updated copy back to the server and tells all clients to get the

new version on the next open. If the server crashes, the server loses all the callback states and needs to ask all clients to

reconstruct the callback states.

18.8 Case Study 18.8.1 DCE Distributed File Service. Distributed Computing Environment DCE A vendor-independent

distributed computing environment, DCE was defined by the Open Software Foundation (OSF), a consortium of

computer manufacturers, including IBM, DEC, and Hewlett- Packard. It is not an operating system, nor is it an

application. Rather, it is an integrated set of services and tools that can be installed as a coherent environment on top of

existing operating systems and serve as a platform for building and running distributed applications. A primary goal of

DCE is vendor independence. It runs on many different kinds of computers, operating systems, and networks produced

by different vendors. For example, some operating systems to which DCE can be easily ported include OSF/1, AIX,

DOMAIN OS, ULTRIX, HP-UX, SINIX, SunOS, UNIX System V, VMS, WINDOWS, and OS/2. On the other hand, it can be

used with any network hardware and transport software, including TCP/IP, X.25, as well as other similar products. As

shown in Figure 10.7, DCE is middleware software layered between the DCE applications layer and the operating system

and networking layer. The basic idea is to take a collection of existing machines (possibly from different vendors),

interconnect them by a communication network, add the DCE software platform on top of the native operating systems

of the machines, and then be able to build and run distributed applications. Each machine has its own local operating

system, which may be different from that of other machines. The DCE software layer on top of the operating system and

networking layer hides the differences between machines by automatically performing data-type conversions when

necessary. Therefore, the heterogeneous nature of the system is transparent to the applications programmers, making

their job of writing distributed applications much simpler. DCE Application DCE Software Operating System &

Networking Table 18.7(a): Position of DCE software in a DCE-based distributed system

DCE Creation? The OSF did not create DCE from scratch. Instead, it created DCE by taking advantage of work already

done at universities and industries in the area of distributed computing. For this, OSF issued a request for technology

(RFT), asking for tools and services needed to build a coherent distributed computing environment. To be a contender, a

primary requirement was that actual working code must ultimately be provided. The submitted bids were carefully

evaluated by OSF employees and a team of outside experts. Finally, those tools and services were selected that the

members of the evaluation committee believed provided the best solutions. The code comprising the selected tools and

services, almost entirely written in C, was then further developed by OSF to produce a single integrated package that was

made available to the world as DCE. Version 1.0 of DCE was released by OSF in January 1992.

144 of 210 5/3/2023, 10:31 AM

DCE Components As mentioned above, DCE is a blend of various technologies developed independently and nicely

integrated by OSF. Each of these technologies forms a component of DCE. The main components of DCE are as follows:

1. Threads Package: It provides a simple programming model for building concurrent applications. It includes operations

to create and control multiple threads of execution in a single process and to synchronize access to global data within an

application. 2. Remote Procedure Call (RPC) Facility: It provides programmers with a number of powerful tools necessary

to build client-server applications. In fact, the DCE RPC facility is the basis for all communication in DCE because the

programming model underlying all of DCE is the client-server model. It is easy to use, is network- and protocol-

independent, provides secure communication between a client and a server, and hides differences in data requirements

by automatically converting data to the appropriate forms needed by clients and servers. 3. Distributed Time Service

(DTS): It closely synchronizes the clocks of all the computers in the system. It also permits the use of time values from

external time sources, such as those of the U.S. National Institute for Standards and Technology (NIST), to synchronize

the clocks of the computers in the system with external time. This facility can also be used to synchronize the clocks of

the computers of one distributed environment with the clocks of the computers of another distributed environment. 4.

Name Services: The name services of DCE include the Cell Directory Service (CDS), the Global Directory Service (GDS),

and the Global Directory Agent (GDA). These services allow resources such as servers, files, devices, and so on, to be

uniquely named and accessed in a location-transparent manner. 5. Security Service: It provides the tools needed for

authentication and authorization to protect system resources against illegitimate access. 6. Distributed File Service (DFS):

It provides a system wide file system that has such characteristics as location transparency, high performance, and high

availability. A unique feature of DCE DFS is that it can also provide file services to clients of other file systems.

The DCE components listed above are tightly integrated. It is difficult to give a pictorial representation of their

interdependencies because they are recursive. For example, the name services use RPC facility for internal

communication among its various servers, but the RPC facility uses the name services to locate the destination.

Therefore, the interdependencies of the various DCE components can be best depicted in tabular form, as shown in

Figure. Component name Other Component used by it Threads None RPC Threads, name, security DTS Threads, RPC,

name, security Name Threads, RPC, DTS, security Security Threads, RPC, DTS, name DFS Threads, RPC, DTS, name,

security Table 18.7(b): Interdependencies of DCE components

145 of 210 5/3/2023, 10:31 AM

DCE Cells The DCE system is highly scalable in the sense that a system running DCE can have thousands of computers

and millions of users spread over a worldwide geographic area. To accommodate such large systems, DCE uses the

concept of cells. This concept helps break down a large system into smaller, manageable units called cells. In a DCE

system, a cell is a group of users, machines, or other resources that typically have a common purpose and share

common DCE services. The minimum cell configuration requires a cell directory server, a security server, a distributed

time server, and one or more client machines. Each DCE client machine has client processes for security service, cell

directory service, distributed time service, RPC facility, and threads facility. ADCE client machine may also have a process

for distributed file service if a cell configuration has a DCE distributed file server. Due to the use of the method of

intersection for clock synchronization, it is recommended that each cell in a DCE system should have at least three

distributed time servers. An important decision to be made while setting up a DCE system is to decide the cell

boundaries. The following four factors should be taken into consideration for making this decision. 1. Purpose: The

machines of users working on a common goal should be put in the same cell, as they need easy access to a common

set of system resources. That is, users of machines in the same cell have closer interaction with each other than with

users of machines in different cells. For example, if a company manufactures and sells various types of products,

depending on the manner in which the company functions, either a product-oriented or a function-oriented approach

may be taken to decide cell boundaries [Tanenbaum 1995]. In the product-oriented approach, separate cells are formed

for each product, with the users of the machines belonging to the same cell being responsible for all types of activities

(design, manufacturing, marketing, and support services) related to one particular product. On the other hand, in the

function-oriented approach, separate cells are formed for each type of activity, with the users belonging to the same cell

being responsible for a particular activity, such as design, of all types of products. 2. Administration: Each system needs

an administrator to register new users in the system and to decide their access rights to the system’s resources. To

perform his or her job properly, an administrator must know the users and the resources of the system. Therefore, to

simplify administration jobs, all the machines and their users that are known to and manageable by an administrator

should be put in a single cell. For example, all machines belonging to the same department of a company or a university

can belong to a single cell. From an administration point of view, each cell has a different administrator. 3. Security:

Machines of those users who have greater trust in each other should be put in the same cell. That is, users of machines

of a cell trust each other more than they trust the users of machines of other cells. In such a design, cell boundaries act

like firewalls in the sense that accessing a resource that belongs to another cell requires more sophisticated

authentication than accessing a resource that belongs to a user’s own cell. 4. Overhead: Several DCE operations, such as

name resolution and user authentication, incur more overhead when they are performed between cells than when they

are performed within the same cell. Therefore, machines of users who frequently interact with each other and the

resources frequently accessed by them should be placed in the same cell The need to access a resource of another cell

should arise infrequently for better overall system performance Notice from the above discussion that in determining cell

boundaries the emphasis is on purpose, administration, security, and performance. Geographical considerations can, but

do not have to, play a part in cell design. For better performance, it is desirable to have as few cells as possible to

minimize the number of operations that need to cross cell boundaries. However, subject to security and administration

constraints, it is desirable to have smaller cells with fewer machines and users. Therefore, it is important to properly

balance the requirements imposed by the four factors mentioned above while deciding cell boundaries in a DCE system.

18.8.2 Sun Network File System (NFS) Sun’s NFS is one of the most popular and widespread distributed file systems in use

today. The design goals of NFS were: • Any machine can be a client and/or a server. • NFS must support diskless

workstations (that are booted from the network). Diskless workstations were Sun’s major product line. • Heterogeneous

systems should be supported: clients and servers may have different hardware and/ or operating systems. Interfaces for

NFS were published to encourage the widespread adoption of NFS.

• High performance: try to make remote access as comparable to local access through caching and read-ahead. Figure

18.7(c): NFS Architecture

From a transparency point of view NFS offers: Access Transparency Remote (NFS) files are accessed through normal

system calls; the protocol is implemented under the VFS (vnode) layer in UNIX.

Location Transparency The client adds remote file systems to its local name space via mount. File systems must be

exported at the server. The user is unaware of which directories are local and which are remote. The location of the

mount point in the local system is up to the client’s administrator.

Failure Transparency NFS is stateless; UDP is used as a transport. If a server fails, the client retries.

146 of 210 5/3/2023, 10:31 AM

Performance Transparency Caching at the client will be used to improve performance

No migration Transparency The client mounts machines from a server. If the resource moves to another server, the client

must know about the move.

No support for Unix Semantics NFS is stateless, so stateful operations such as file locking are a problem. All UNIX file

system controls may not be available.

Devices Since NFS had to support diskless workstations, where every file is remote, remote device files had to refer to the

client’s local devices. Otherwise there would be no way to access local devices in a diskless environment.

NFS Protocols The NFS client and server communicate over remote procedure calls (Sun’s RPC) using two protocols: the

mounting protocol and the directory and file access protocol. The mounting protocol is used to request a access to an

exported directory (and the files and directories within that file system under that directory). The directory and file access

protocol is used for accessing the files and directories (e.g. read/write bytes, create files, etc.). The use of RPC’s external

data representation (XDR) allows NFS to communicate with heterogeneous machines. The initial design of NFS ran only

with remote procedure calls over UDP. This was done for two reasons. The first reason is that UDP is somewhat faster

than TCP but does not provide error correction (the UDP header provides a checksum of the data and headers). The

second reason is that UDP does not require a connection to be present. This means that the server does not need to

keep per- client connection state and there is no need to re-establish a connection if a server was rebooted. The lack of

UDP error correction is remedied in the fact that remote procedure calls have built-in retry logic. The client can specify

the maximum number of retries (default is 5) and a timeout period. If a valid response is not received within the timeout

period the request is re-sent. To avoid server overload, the timeout period is then doubled. The retry continues until the

limit has been reached. This same logic keeps NFS clients fault-tolerant in the presence of server failures: a client will

keep retrying until the server responds.

Mounting Protocol The client sends the pathname to the server and requests permission to access the contents of that

directory. If the name is valid and exported (listed in /etc/dfs/sharetab on System V release 4 versions of UNIX, and

/etc/exports on many other versions) the server returns a file handle to the client. This file handle contains all the

information needed to identify the file on the server: {file system type, disk ID, inode number, and security info}. Mounting

an NFS file system is accomplished by parsing the path name, contacting the remote machine for a file handle, and

creating an in-core vnode at the mount point. A vnode points to an inode for a local UNIX file or, in the case of NFS, an

rnode. The rnode contains specific information about the state of the file from the point of view of the client.

Directory and File Access Protocol Clients send RPC messages to the server to manipulate files and directories. A file is

accessed by performing a lookup remote procedure call. This returns a file handle and attributes. It is not like an open in

that no information is stored in any system tables on the server. After that, the handle may be passed as a parameter for

other functions. For example, a read (handle, offset, count) function will read count bytes from location offset in the file

referred to by handle. The entire directory and file access protocol is encapsulated in sixteen functions. These are: null

no-operation but ensure that connectivity exists lookup lookup the file name in a directory create create a file or a

symbolic link remove remove a file from a directory rename rename a file or directory read read bytes from a file write

write bytes to a file link create a link to a file symlink create a symbolic link to a file read link read the data in a symbolic

link (do not follow the link) mkdir create a directory rmdir remove a directory reader read from a directory getattr get

attributes about a file or directory (type, access and modify times, and access permissions) setattr set file attributes statfs

get information about the remote file system

147 of 210 5/3/2023, 10:31 AM

Accessing Files Files are accessed through conventional system calls (thus providing access transparency). If you recall

conventional UNIX systems; a hierarchical pathname is dereference to the file location with a kernel function called

name. This function maintains a reference to a current directory looks at one component and finds it in the directory,

changes the reference to that directory, and continues until the entire path is resolved. At each point in traversing this

pathname, it checks to see whether the component is a mount point, meaning that name resolution should continue on

another file system. In the case of NFS, it continues with remote procedure calls to the server hosting that file system.

Upon realizing that the rest of the pathname is remote, name will continue to parse one component of the pathname at

a time to ensure that references to and to symbolic links become local if necessary. Each component is retrieved via a

remote procedure call which performs an NFS lookup. This procedure returns a file handle. An in-core rnode is created

and the VFS layer in the file system creates a vnode to point to it. The application can now issue read and write system

calls. The file descriptor in the user’s process will reference the in-core vnode at the VFS layer, which in turn will

reference the in core rnode at the NFS level which contains NFS-specific information, such as the file handle. At the NFS

level, NFS read, write, etc. operations may now be performed, passing the file handle and local state (such as file offset)

as parameters. No information is maintained on the server between requests; it is a stateless system. The RPC requests

have the user ID and group ID number sent with them. This is a security hole that may be stopped by turning on RPC

encryption.

Problems The biggest problem with NFS is file consistency. The caching and validation policies do not guarantee session

semantics. NFS assumes that clocks between machines are synchronized and performs no clock synchronization

between client and server. One place where this hurts is in distributed software development environments. A program

such as make, which compares times of files (such as object and source) to determine whether to regenerate them, can

either fail or give confusing results. Because of its stateless design, open with append mode cannot be guaranteed to

work. You can open a file, get the attributes (size), and then write at that offset, but you’ll have no assurance that

somebody else did not write to that location after you received the attributes. In that case your write will overwrite the

other once since it will go to the old end-of-file byte offset. Also because of its stateless nature, file locking cannot work.

File locking implies that the server keeps track of which processes have locks on the file. Sun’s solution to this was to

provide a separate process (a lock manager) that does keep state. One common programming practice under UNIX file

systems for manipulating temporary data in files is to open a temporary file and then remove it from the directory. The

name is gone, but the data persists because you still have the file open. Under NFS, the server maintains no state about

remotely opened files and removing a file will cause the file to disappear. Since legacy applications depended on this,

Sun’s solution was to create a special hack for UNIX: if the same process that has a file open attempts to delete it, it is

instead moved to a temporary name and deleted on close. It’s not a perfect solution, but it works well. Permission bits

might change on the server and disallow future access to a file. Since NFS is stateless, it has to check access permissions

each time it receives an NFS request. With local file systems, once access is granted initially, a process can continue

accessing the file even if permissions change. By default, no data is encrypted, and Unix-style authentication is used

(used ID, group ID). NFS supports two additional forms of authentication: Diffie-Hellman and Kerberos. However, data is

never encrypted, and user-level software should be used to encrypt files if this is necessary.

18.8.3 OSF

Distributed file systems are an important component of an overall plan for distributed. Two such plans are currently being

promulgated, one by OSF and the other by UI. A high-level view of these plans is shown in Figure. Figure 18.7(d):

Competing Distributed Architecture Plans

UNIX International (UI), with the aid of (a portion of) the computer industry, has devised an overall framework for an

industry-standard distributing computing architecture. The Open Software Foundation (OSF), in the meantime, has been

developing an actual distributed computing architecture, known as DCE (for distributed computing environment).

Fortunately, as it turns out, OSF’s DCE fits within the UI Atlas view of the world. However, Sun’s ONC (Open Network

Computing) also fits within this scheme. The intent of both groups is that, whatever distributed architecture is adopted, it

will support (or be supportable by) most existing operating systems, not just UNIX. DCE is currently well into

development. Two initial, “functionality” versions of it have been released, and a production-quality release is expected

within a year. As a separate project, OSF is working on DME (distributed management environment), whose concern is

the management of services within a distributed environment.

18.9 Summary In this unit, we discussed the various distributed file system.

A file system is responsible for the organization, storage, retrieval, naming, sharing, and protection of files.

148 of 210 5/3/2023, 10:31 AM

A Distributed File System is a network file system where a single file system can be distributed across several physical

computer nodes. Fault tolerance, scalability and transparency etc are the features of good distributed file system.

Each file has a list of users associated with it and access permissions per user. Multiple users may be organized into an

entity known as a group.

These are managed by the Access Control List. In distributed file systems, not only local failures (e.g., due storage

devices) should be dealt with, but also other failures inherent to the distributed environment. Stateless and stateful

services are generally considered in it. At last, we compared various file system like AFS, NFS etc. in case study.

Self - Assessment Exercise 1. Briefly explain the features of Good DFS. 2. What do you mean by File System? Explain

different File System issues. 3. Explain DCE. 4. Explain the NFS and its protocols. 5. Explain OSF with suitable diagram.

hdphoto1.wdp

Hit and source - focused comparison, Side by Side

Submitted text As student entered the text in the submitted document.

Matching text As the text appears in the source.

1/301 SUBMITTED TEXT 18 WORDS

Operating System is a software program that acts as an

interface between the user and the computer.

91% MATCHING TEXT 18 WORDS

operating system is a program that acts as an interface

between the user and the computer

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

2/301 SUBMITTED TEXT 18 WORDS

Operating System is a software program that acts as an

interface between the user and the computer.

91% MATCHING TEXT 18 WORDS

operating system is a program that acts as an interface

between the user and the computer

https://docplayer.net/201234710-Department-of-computer-science-and-engineering-cs8493-operating-s ...

3/301 SUBMITTED TEXT 30 WORDS

The General Motors Research Laboratories implemented

the first operating systems in early 1950’s for their IBM

701. The system of the 50’s generally ran one job at a

time.

85% MATCHING TEXT 30 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

4/301 SUBMITTED TEXT 17 WORDS

The main function of a batch processing system is to

automatically keep executing one job to

68% MATCHING TEXT 17 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

149 of 210 5/3/2023, 10:31 AM

5/301 SUBMITTED TEXT 17 WORDS

The main function of a batch processing system is to

automatically keep executing one job to

68% MATCHING TEXT 17 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245827)

6/301 SUBMITTED TEXT 18 WORDS

Systems Most systems to date are single-processor

systems; that is, they have only one main CPU. However,

there

100% MATCHING TEXT 18 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

7/301 SUBMITTED TEXT 18 WORDS

Systems Most systems to date are single-processor

systems; that is, they have only one main CPU. However,

there

100% MATCHING TEXT 18 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245827)

8/301 SUBMITTED TEXT 41 WORDS

multiprocessor systems. Such systems have more than

one processor in close communication, sharing the

computer bus, the clock, and sometimes memory and

peripheral devices. These systems are referred to as

tightly coupled systems. 1.3.4

100% MATCHING TEXT 41 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

9/301 SUBMITTED TEXT 41 WORDS

multiprocessor systems. Such systems have more than

one processor in close communication, sharing the

computer bus, the clock, and sometimes memory and

peripheral devices. These systems are referred to as

tightly coupled systems. 1.3.4

100% MATCHING TEXT 41 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245827)

150 of 210 5/3/2023, 10:31 AM

10/301 SUBMITTED TEXT 38 WORDS

Distributed Systems A recent trend in computer systems

is to distribute computation among several processors. In

contrast to the tightly coupled systems, the processors

do not share memory or a clock. Instead, each processor

has its own memory

94% MATCHING TEXT 38 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

11/301 SUBMITTED TEXT 38 WORDS

Distributed Systems A recent trend in computer systems

is to distribute computation among several processors. In

contrast to the tightly coupled systems, the processors

do not share memory or a clock. Instead, each processor

has its own memory

94% MATCHING TEXT 38 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245827)

12/301 SUBMITTED TEXT 12 WORDS

processors in a distributed system may vary in size and

function.

100% MATCHING TEXT 12 WORDS

Operating System.pdf (D30089487)

13/301 SUBMITTED TEXT 84 WORDS

The processors communicate with one another through

various communication lines, such as high-speed buses

or telephone lines. These systems are usually referred to

as loosely coupled systems, or distributed systems. The

processors in a distributed system may vary in size and

function. They may include small microprocessors,

workstations, minicomputers, and large general-purpose

computer systems. These processors are referred to by a

number of different names, such as sites, nodes,

computers, and so on, depending on the context in

which they are mentioned. 1.2.5 Real Time Systems

98% MATCHING TEXT 84 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

151 of 210 5/3/2023, 10:31 AM

14/301 SUBMITTED TEXT 84 WORDS

The processors communicate with one another through

various communication lines, such as high-speed buses

or telephone lines. These systems are usually referred to

as loosely coupled systems, or distributed systems. The

processors in a distributed system may vary in size and

function. They may include small microprocessors,

workstations, minicomputers, and large general-purpose

computer systems. These processors are referred to by a

number of different names, such as sites, nodes,

computers, and so on, depending on the context in

which they are mentioned. 1.2.5 Real Time Systems

98% MATCHING TEXT 84 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245827)

15/301 SUBMITTED TEXT 38 WORDS

real-time system. A real-time system is used when there

are rigid time requirements on the operation of a

processor or the flow of data, and thus is often used as a

control device in a dedicated application.

96% MATCHING TEXT 38 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

16/301 SUBMITTED TEXT 161 WORDS

Program Execution The purpose of a computer system is

to allow the user to execute programs. So the operating

system provides an environment where the user can

conveniently run programs. The user does not have to

worry about the memory allocation or multitasking or

anything. These things are taken care of by the operating

systems. Running a program involves the allocating and

de-allocating memory, CPU scheduling in case of

multiprocessing. These functions cannot be given to the

user-level programs. So user-level programs cannot help

the user to run programs independently without the help

from operating systems. (b) I/O Operations Each program

requires an input and produces output. This involves the

use of I/O. Operating systems hide from the user, the

details of underlying hardware for the I/O. All the user

sees is that the I/O has been performed without any

details. So, the operating system

85% MATCHING TEXT 161 WORDS

Operating System.pdf (D30089487)

152 of 210 5/3/2023, 10:31 AM

17/301 SUBMITTED TEXT 27 WORDS

File System Manipulation The output of a program may

need to be written into new files or input taken from

some files.

100% MATCHING TEXT 27 WORDS

Operating System.pdf (D30089487)

18/301 SUBMITTED TEXT 71 WORDS

operating system provides this service. The user does not

have to worry about secondary storage management.

User gives a command for reading or writing to a file and

sees his/her task accomplished. Thus operating system

makes it easier for user programs to accomplish their

task. This service involves secondary storage

management. The speed of I/O that depends on

secondary storage management is critical to the speed of

many programs and

94% MATCHING TEXT 71 WORDS

Operating System.pdf (D30089487)

19/301 SUBMITTED TEXT 95 WORDS

it is best relegated to the operating systems to manage it

than giving individual users the control of it. It is not

difficult for the user-level programs to provide these

services but for above mentioned reasons it is best if this

service s left with operating system. (d) Communications

There are instances where processes need to

communicate with each other to exchange information.

It may be between processes running on the same

computer or running on the different computers. By

providing this service,

92% MATCHING TEXT 95 WORDS

Operating System.pdf (D30089487)

153 of 210 5/3/2023, 10:31 AM

20/301 SUBMITTED TEXT 210 WORDS

operating system relieves the user of the worry of passing

messages between processes. In case where the

messages need to be passed to processes on the other

computers through a network, it can be done by the user

programs. The user program may be customized

according to the hardware through which the message

transits and provides the service interface to the

operating system. (e) Error Detection An error occurs

when one part of the system may cause malfunctioning

of the complete system. To avoid such a situation the

operating system constantly monitors the system for

detecting the errors. This relieves the user of the worry of

errors propagating to various part of the system and

causing malfunctioning. This service cannot allow to be

handled by user programs because it involves monitoring

and in cases altering area of memory or de-allocation of

memory for a faulty process. Or maybe relinquishing the

CPU of a process that goes into an infinite loop. These

tasks are too critical to be handed over to the user

programs. A user program if given these privileges can

interfere with the correct (normal) operation of the

operating systems. 1.5

94% MATCHING TEXT 210 WORDS

Operating System.pdf (D30089487)

21/301 SUBMITTED TEXT 19 WORDS

a time. The main function of a batch processing system is

to automatically keep executing one job to

63% MATCHING TEXT 19 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

22/301 SUBMITTED TEXT 19 WORDS

a time. The main function of a batch processing system is

to automatically keep executing one job to

63% MATCHING TEXT 19 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245827)

154 of 210 5/3/2023, 10:31 AM

23/301 SUBMITTED TEXT 22 WORDS

systems have more than one processor in close

communication, sharing the computer bus, the clock,

and sometimes memory and peripheral devices.

100% MATCHING TEXT 22 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

24/301 SUBMITTED TEXT 22 WORDS

systems have more than one processor in close

communication, sharing the computer bus, the clock,

and sometimes memory and peripheral devices.

100% MATCHING TEXT 22 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245827)

25/301 SUBMITTED TEXT 25 WORDS

The processors in a distributed system may vary in size

and function. They may include small microprocessors,

workstations, minicomputers, and large general-purpose

computer systems.

94% MATCHING TEXT 25 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

26/301 SUBMITTED TEXT 25 WORDS

The processors in a distributed system may vary in size

and function. They may include small microprocessors,

workstations, minicomputers, and large general-purpose

computer systems.

94% MATCHING TEXT 25 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245827)

27/301 SUBMITTED TEXT 37 WORDS

systems. A real-time system is used when there are rigid

time requirements on the operation of a processor or the

flow of data, and thus is often used as a control device in

a dedicated application.

100% MATCHING TEXT 37 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

155 of 210 5/3/2023, 10:31 AM

28/301 SUBMITTED TEXT 37 WORDS

systems. A real-time system is used when there are rigid

time requirements on the operation of a processor or the

flow of data, and thus is often used as a control device in

a dedicated application.

100% MATCHING TEXT 37 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245827)

29/301 SUBMITTED TEXT 21 WORDS

Operating system provides an environment where the

user can conveniently run programs. 2.

100% MATCHING TEXT 21 WORDS

Operating System.pdf (D30089487)

30/301 SUBMITTED TEXT 21 WORDS

Operating system makes it easier for user programs to

accomplish their task. 4.

100% MATCHING TEXT 21 WORDS

Operating System.pdf (D30089487)

31/301 SUBMITTED TEXT 22 WORDS

Operating system relieves the user of the worry of

passing messages between processes. 5.

100% MATCHING TEXT 22 WORDS

Operating System.pdf (D30089487)

32/301 SUBMITTED TEXT 29 WORDS

Operating system constantly monitors the system for

detecting the errors. This relieves the user of the worry of

errors propagating to various part of the system and

causing malfunctioning.

100% MATCHING TEXT 29 WORDS

Operating System.pdf (D30089487)

33/301 SUBMITTED TEXT 17 WORDS

The main function of a batch processing system is to

automatically keep executing one job to

68% MATCHING TEXT 17 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

156 of 210 5/3/2023, 10:31 AM

34/301 SUBMITTED TEXT 17 WORDS

The main function of a batch processing system is to

automatically keep executing one job to

68% MATCHING TEXT 17 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245827)

35/301 SUBMITTED TEXT 35 WORDS

System Calls System calls provides an interface between

the process and the operating system. System calls allow

user-level processes to request some services from the

operating system which process itself is not allowed to

do.

94% MATCHING TEXT 35 WORDS

Operating System.pdf (D30089487)

36/301 SUBMITTED TEXT 16 WORDS

provide basic functioning to users so that they do not

need to write their own

80% MATCHING TEXT 16 WORDS

provide basic functionality to users so that users do not

need to write their own

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

37/301 SUBMITTED TEXT 28 WORDS

for I/O a process involves a system call telling the

operating system to read or write particular area and this

request is satisfied by the operating system.

100% MATCHING TEXT 28 WORDS

Operating System.pdf (D30089487)

38/301 SUBMITTED TEXT 13 WORDS

System calls provide the interface between a process and

the operating system.

100% MATCHING TEXT 13 WORDS

System calls provide the interface between a process and

the operating system. ➔

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

39/301 SUBMITTED TEXT 13 WORDS

System calls provide the interface between a process and

the operating system.

100% MATCHING TEXT 13 WORDS

System calls provide the interface between a process and

the operating system. ➔

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

157 of 210 5/3/2023, 10:31 AM

40/301 SUBMITTED TEXT 24 WORDS

Send message Send a message to a message queue.

Receive message Receive a message from a

68% MATCHING TEXT 24 WORDS

send (A, message) Send a message to mailbox A. receive

(A, message) Receive a message from A.

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

41/301 SUBMITTED TEXT 13 WORDS

controls and coordinates the use of hardware among

various application programs for

91% MATCHING TEXT 13 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

42/301 SUBMITTED TEXT 13 WORDS

controls and coordinates the use of hardware among

various application programs for

91% MATCHING TEXT 13 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245827)

43/301 SUBMITTED TEXT 25 WORDS

The processors in a Distributed System may vary in size

and functions. They may include small microprocessor,

workstation, minicomputer and large general purpose

computer

75% MATCHING TEXT 25 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

44/301 SUBMITTED TEXT 25 WORDS

The processors in a Distributed System may vary in size

and functions. They may include small microprocessor,

workstation, minicomputer and large general purpose

computer

75% MATCHING TEXT 25 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245827)

45/301 SUBMITTED TEXT 14 WORDS

the contents of the processor's registers. A process, also

include, the process stack

85% MATCHING TEXT 14 WORDS

the contents of the processor’s registers. A process

generally also includes the process stack,

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

158 of 210 5/3/2023, 10:31 AM

46/301 SUBMITTED TEXT 17 WORDS

State The state of a process is defined in part by the

current activity of that process.

100% MATCHING TEXT 17 WORDS

state. The state of a process is defined in part by the

current activity of that process.

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

47/301 SUBMITTED TEXT 16 WORDS

Each process may be in one of the following five states:

01 New State The process being created 02 Running

66% MATCHING TEXT 16 WORDS

Each process may be in one of the following states: New:

The process is being created. Running:

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

48/301 SUBMITTED TEXT 25 WORDS

For example, a word processing program being run by an

individual user on computer is a process 4.3

64% MATCHING TEXT 25 WORDS

OS_SLM_Revised.pdf (D155071872)

49/301 SUBMITTED TEXT 14 WORDS

instructions are being executed. 03 Waiting State The

process is waiting for some event to occur,

90% MATCHING TEXT 14 WORDS

Instructions are being executed Waiting The process is

waiting for some event to occur

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

50/301 SUBMITTED TEXT 24 WORDS

instructions are being executed. 03 Waiting State The

process is waiting for some event to occur, for instance

an I/O completion or reception of a signal.

82% MATCHING TEXT 24 WORDS

Instructions are being executed. Waiting: The process is

waiting for some event to occur (such as an I/O

completion or reception of a signal).

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

51/301 SUBMITTED TEXT 15 WORDS

The process is waiting to be assigned to a processor. 05

Terminated State The process has finished execution.

91% MATCHING TEXT 15 WORDS

The process is waiting to be assigned to a processor.

Terminated: The process has finished execution. 3

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

159 of 210 5/3/2023, 10:31 AM

52/301 SUBMITTED TEXT 142 WORDS

Process state Process number Program counter Registers

Memory limits List of open files

96% MATCHING TEXT 142 WORDS

Process state Process number Program counter CPU

registers Memory limits List of open files

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

53/301 SUBMITTED TEXT 142 WORDS

Process state Process number Program counter Registers

Memory limits List of open files

96% MATCHING TEXT 142 WORDS

Process state Process number Program counter CPU

registers Memory limits List of open files

https://docplayer.net/201234710-Department-of-computer-science-and-engineering-cs8493-operating-s ...

54/301 SUBMITTED TEXT 16 WORDS

CPU Scheduling information It includes a process priority,

pointers to scheduling queues, and other scheduling

parameters. 5 Memory Management

86% MATCHING TEXT 16 WORDS

CPU-scheduling information: This includes a process

priority, pointers to scheduling queues, and any other

scheduling parameters. Memory-management

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

55/301 SUBMITTED TEXT 13 WORDS

the address of the next instruction to be executed for this

process. 2 Process

100% MATCHING TEXT 13 WORDS

Operating System.pdf (D30089487)

56/301 SUBMITTED TEXT 13 WORDS

occurs, the system needs to save the current context of

the process

100% MATCHING TEXT 13 WORDS

OS_Notes_Full.pdf (D108987417)

57/301 SUBMITTED TEXT 16 WORDS

When an interrupts occurs, the system needs to save the

current context of the process

80% MATCHING TEXT 16 WORDS

COOS.docx (D142533740)

160 of 210 5/3/2023, 10:31 AM

58/301 SUBMITTED TEXT 16 WORDS

When an interrupts occurs, the system needs to save the

current context of the process

80% MATCHING TEXT 16 WORDS

COOS.docx (D142535190)

59/301 SUBMITTED TEXT 14 WORDS

running on the CPU so that it can restore that context

when its

100% MATCHING TEXT 14 WORDS

OS_Notes_Full.pdf (D108987417)

60/301 SUBMITTED TEXT 15 WORDS

of the process. It includes the value of the CPU registers,

the process state

100% MATCHING TEXT 15 WORDS

OS_Notes_Full.pdf (D108987417)

61/301 SUBMITTED TEXT 55 WORDS

the CPU to another process requires performing a state

save of the current process and a state restore of a

different process. This task is known as Context

Switching. During context switching, the kernel saves the

context of the old process in its PCB and loads the

context of the new process scheduled to run.

86% MATCHING TEXT 55 WORDS

OS_Notes_Full.pdf (D108987417)

62/301 SUBMITTED TEXT 24 WORDS

obtain its resources directly from the operating system or

it may be constrained to a subset of the resources of the

parent process.

100% MATCHING TEXT 24 WORDS

obtain its resources directly from the operating system, or

it may be constrained to a subset of the resources of the

parent process.

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

161 of 210 5/3/2023, 10:31 AM

63/301 SUBMITTED TEXT 24 WORDS

During the execution, a process may create several new

processes. The process which creates several new

processes is called Parent process while the

67% MATCHING TEXT 24 WORDS

COOS.docx (D142533740)

64/301 SUBMITTED TEXT 36 WORDS

When a process creates a sub process, that sub process

can either obtain its resources directly from the operating

system or it may be constrained to a subset of the

resources of the parent process.

84% MATCHING TEXT 36 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

65/301 SUBMITTED TEXT 11 WORDS

restricting a child process to a subset of the parent's

resources.

100% MATCHING TEXT 11 WORDS

Restricting a child process to a subset of the parent’s

resources

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

66/301 SUBMITTED TEXT 20 WORDS

finishes executing its final statement and asks the system

to delete it by using the exit () system call,

97% MATCHING TEXT 20 WORDS

finishes executing its final statement and asks the

operating system to delete it by using the exit system call.

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

67/301 SUBMITTED TEXT 36 WORDS

When a process creates a sub process, that sub process

can either obtain its resources directly from the operating

system or it may be constrained to a subset of the

resources of the parent process.

84% MATCHING TEXT 36 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245827)

162 of 210 5/3/2023, 10:31 AM

68/301 SUBMITTED TEXT 20 WORDS

finishes executing its final statement and asks the system

to delete it by using the exit () system call,

88% MATCHING TEXT 20 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

69/301 SUBMITTED TEXT 35 WORDS

A parent may terminate the execution of one of its

children if the child has exceeded its usage of some of its

resource or the task assigned to the child is no longer

required.

66% MATCHING TEXT 35 WORDS

A parent may terminate the execution of one of its

children for a variety of reasons, such as these: 1. The

child has exceeded its usage of some of resources that

has Been 7 2. The task assigned to the child is no longer

required. 3.

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

70/301 SUBMITTED TEXT 16 WORDS

such systems, if a process terminates than all its children

must also be terminated. This

76% MATCHING TEXT 16 WORDS

such systems, if a process terminates (either normally or

abnormally), then all its children must also be terminated.

This

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

71/301 SUBMITTED TEXT 27 WORDS

to its parent process. All the resources of the process,

whether physical or virtual memory, open files, and input/

output devices are de-allocated by the operating system.

55% MATCHING TEXT 27 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

72/301 SUBMITTED TEXT 21 WORDS

cannot affect or be affected by the other processes. Thus

independent process does not share its data with any

other

67% MATCHING TEXT 21 WORDS

cannot affect or be affected by the other processes

executing in the system. A process that does not share

data with any other

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

163 of 210 5/3/2023, 10:31 AM

73/301 SUBMITTED TEXT 21 WORDS

cannot affect or be affected by the other processes. Thus

independent process does not share its data with any

other

67% MATCHING TEXT 21 WORDS

cannot affect or be affected by the other processes

executing in the system. A process that does not share

data with any other

https://docplayer.net/201234710-Department-of-computer-science-and-engineering-cs8493-operating-s ...

74/301 SUBMITTED TEXT 13 WORDS

communication takes place by means of messages

exchanged between the cooperating processes.

100% MATCHING TEXT 13 WORDS

communication takes place by means of messages

exchanged between the cooperating processes. (

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

75/301 SUBMITTED TEXT 17 WORDS

In Message Passing System, communication takes place

by means of messages exchanged between the

cooperating processes.

100% MATCHING TEXT 17 WORDS

INF_1036.pdf (D164968063)

76/301 SUBMITTED TEXT 19 WORDS

new, ready, waiting or terminated. Each process is

represented in the operating system by its own Process

Control

88% MATCHING TEXT 19 WORDS

OS_SLM_Revised.pdf (D155071872)

77/301 SUBMITTED TEXT 23 WORDS

Like processes, if one thread is blocked, another thread

can run. Differences • Unlike processes, threads

70% MATCHING TEXT 23 WORDS

OS_SLM_Revised.pdf (D155071872)

78/301 SUBMITTED TEXT 16 WORDS

the kernel has a thread table that keeps track of all

threads in the system.

73% MATCHING TEXT 16 WORDS

OS_SLM_Revised.pdf (D155071872)

164 of 210 5/3/2023, 10:31 AM

79/301 SUBMITTED TEXT 15 WORDS

code section, data section and operating system

resources like open files with other threads.

78% MATCHING TEXT 15 WORDS

OS_SLM_Revised.pdf (D155071872)

80/301 SUBMITTED TEXT 76 WORDS

There are four major categories of benefits to multi-

threading: 1. Responsiveness - One thread may provide

rapid response while other threads are blocked or slowed

down doing intensive calculations. 2. Resource sharing -

By default; threads share common code, data, and other

resources, which allows multiple tasks to be performed

simultaneously in a single address space. 3.

100% MATCHING TEXT 76 WORDS

OS_Notes_Full.pdf (D108987417)

81/301 SUBMITTED TEXT 141 WORDS

the port.) Benefits There are four major categories of

benefits to multi-threading: 1. Responsiveness - One

thread may provide rapid response while other threads

are blocked or slowed down doing intensive calculations.

2. Resource sharing - By default; threads share common

code, data, and other resources, which allows multiple

tasks to be performed simultaneously in a single address

space. 3. Economy - Creating and managing threads (and

context switches between them) is much faster than

performing the same tasks for processes. 4. Scalability, i.e.

utilization of multiprocessor architectures - Asingle

threaded process can only run on one CPU, no matter

how many may be available, whereas the execution of a

multi-threaded application may be split amongst available

processors. (

96% MATCHING TEXT 141 WORDS

the computer. There are four major categories of benefits

to multi-threading: 1. Responsiveness - One thread may

provide rapid response while other threads are blocked or

slowed down doing intensive calculations. 2. Resource

sharing - By default threads share common code, data,

and other resources, which allows multiple tasks to be

performed simultaneously in a single address space. 3.

Economy - Creating and managing threads (and context

switches between them) is much faster than performing

the same tasks for processes. 4. Scalability, i.e. Utilization

of multiprocessor architectures - A threaded process can

only run on one CPU, no matter how many may be

available, whereas the execution of a multi-threaded

application may be split amongst available processors

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

82/301 SUBMITTED TEXT 19 WORDS

is much faster than performing the same tasks for

processes. 4. Scalability,

100% MATCHING TEXT 19 WORDS

OS_Notes_Full.pdf (D108987417)

165 of 210 5/3/2023, 10:31 AM

83/301 SUBMITTED TEXT 29 WORDS

threaded process can only run on one CPU, no matter

how many may be available, whereas the execution of a

multi-threaded application may be split amongst available

processors. (

100% MATCHING TEXT 29 WORDS

OS_Notes_Full.pdf (D108987417)

84/301 SUBMITTED TEXT 132 WORDS

Many-To-One Model • In the many-to-one model, many

user-level threads are all mapped onto a single kernel

thread. • Thread management is handled by the thread

library in user space, which is very efficient. • However, if

a blocking system call is made, then the entire process

blocks, even if the other user threads would otherwise be

able to continue. • Because a single kernel thread can

operate only on a single CPU, the many-to-one model

does not allow individual processes to be split across

multiple CPUs. • Green threads for Solaris and GNU

Portable Threads

96% MATCHING TEXT 132 WORDS

OS_Notes_Full.pdf (D108987417)

85/301 SUBMITTED TEXT 116 WORDS

One-To-One Model • The one-to-one model creates a

separate kernel thread to handle each user thread. • One-

to-one model overcomes the problems listed above

involving blocking system calls and the splitting of

processes across multiple CPUs. • However the overhead

of managing the one-to-one model is more significant,

involving more overhead and slowing down the system. •

Most implementations of this model place a limit on how

many threads can be created. • Linux and Windows from

95 to XP

97% MATCHING TEXT 116 WORDS

OS_Notes_Full.pdf (D108987417)

166 of 210 5/3/2023, 10:31 AM

86/301 SUBMITTED TEXT 116 WORDS

Deliver the signal to the thread to which the signal

applies. • Deliver the signal to every thread in the process.

• Deliver the signal to certain threads in the process. •

Assign a specific thread to receive all signals

95% MATCHING TEXT 116 WORDS

Deliver the signal to the thread to which the signal

applies. b. Deliver the signal to every thread in the

process. c. Deliver the signal to certain threads in the

process. d. Assign a specific thread to receive all signals

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

87/301 SUBMITTED TEXT 140 WORDS

Many-To-Many Model • The many-to-many model

multiplexes any number of user threads onto an equal or

smaller num ber of kernel threads, combining the best

features of the one-to-one and many-to-one models. •

Users have no restrictions on the number of threads

created. • Blocking kernel system calls do not block the

entire process. • Processes can be split across multiple

processors. • Individual processes may be allocated

variable numbers of kernel threads, depending on the

num ber of CPUs present and other factors.

90% MATCHING TEXT 140 WORDS

OS_Notes_Full.pdf (D108987417)

88/301 SUBMITTED TEXT 18 WORDS

program state are shared across threads in a

multithreaded process? 4.

100% MATCHING TEXT 18 WORDS

InstructorsSolutions_ExcerciseQuestions.pdf (D147754554)

89/301 SUBMITTED TEXT 21 WORDS

Throughput - number of processes that complete their

execution per time unit. •

95% MATCHING TEXT 21 WORDS

Throughput – The number of processes that complete

their execution per time unit.

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

90/301 SUBMITTED TEXT 29 WORDS

Response time - amount of time it takes from when a

request was submitted until the first response is

produced. •

100% MATCHING TEXT 29 WORDS

Response time – amount of time it takes from when a

request was submitted until the first response is

produced,

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

167 of 210 5/3/2023, 10:31 AM

91/301 SUBMITTED TEXT 63 WORDS

Can a multithreaded system using many user-level

threads achieve better performance on a multi processor

system than on a single processor system?

73% MATCHING TEXT 63 WORDS

InstructorsSolutions_ExcerciseQuestions.pdf (D147754554)

92/301 SUBMITTED TEXT 29 WORDS

Response time - amount of time it takes from when a

request was submitted until the first response is

produced. •

100% MATCHING TEXT 29 WORDS

OS_Notes_Full.pdf (D108987417)

93/301 SUBMITTED TEXT 105 WORDS

The success of CPU scheduling depends on an observed

property of processes: o Process execution consists of a

cycle of CPU execution and I/O wait. Processes alternate

between these two states. o Process execution begins

with a CPU burst. That is followed by an I/O burst, which

is followed by another CPU burst, then another I/O burst,

and so on. • Eventually, the final CPU burst ends with a

system request to terminate execution (

86% MATCHING TEXT 105 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

94/301 SUBMITTED TEXT 105 WORDS

The success of CPU scheduling depends on an observed

property of processes: o Process execution consists of a

cycle of CPU execution and I/O wait. Processes alternate

between these two states. o Process execution begins

with a CPU burst. That is followed by an I/O burst, which

is followed by another CPU burst, then another I/O burst,

and so on. • Eventually, the final CPU burst ends with a

system request to terminate execution (

86% MATCHING TEXT 105 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245827)

168 of 210 5/3/2023, 10:31 AM

95/301 SUBMITTED TEXT 74 WORDS

curve is generally characterized as exponential or

hyperexponential, with a large number of short CPU

bursts and a small number of long CPU bursts. • An I/O-

bound program typically has many short CPU bursts. • A

CPU-bound program might have a few long CPU bursts.

This distribution can be important in the selection of an

appropriate CPU-scheduling algorithm.

85% MATCHING TEXT 74 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

96/301 SUBMITTED TEXT 74 WORDS

curve is generally characterized as exponential or

hyperexponential, with a large number of short CPU

bursts and a small number of long CPU bursts. • An I/O-

bound program typically has many short CPU bursts. • A

CPU-bound program might have a few long CPU bursts.

This distribution can be important in the selection of an

appropriate CPU-scheduling algorithm.

85% MATCHING TEXT 74 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245827)

97/301 SUBMITTED TEXT 32 WORDS

CPU-scheduling decisions may take place under the

following four circumstances: 1. When a process switches

from the running state to the waiting state (for example,

100% MATCHING TEXT 32 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

98/301 SUBMITTED TEXT 32 WORDS

CPU-scheduling decisions may take place under the

following four circumstances: 1. When a process switches

from the running state to the waiting state (for example,

100% MATCHING TEXT 32 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245827)

169 of 210 5/3/2023, 10:31 AM

99/301 SUBMITTED TEXT 65 WORDS

invocation of wait for the termination of one of the child

processes). 2. When a process switches from the running

state to the ready state (for example, when an interrupt

occurs). 3. When a process switches from the waiting

state to the ready state (for example, at completion of

I/O, on a

94% MATCHING TEXT 65 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

100/301 SUBMITTED TEXT 106 WORDS

Pre-emptive Scheduling CPU-scheduling decisions may

take place under the following four circumstances: 1.

When a process switches from the running state to the

waiting state (for example, as the result of an I/O request

or an invocation of wait for the termination of one of the

child processes). 2. When a process switches from the

running state to the ready state (for example, when an

interrupt occurs). 3. When a process switches from the

waiting state to the ready state (for example, at

completion of I/O, on a

89% MATCHING TEXT 106 WORDS

OS_Notes_Full.pdf (D108987417)

101/301 SUBMITTED TEXT 69 WORDS

O request or an invocation of wait for the termination of

one of the child processes). 2. When a process switches

from the running state to the ready state (for example,

when an interrupt occurs). 3. When a process switches

from the waiting state to the ready state (for example, at

completion of I/O, on a

91% MATCHING TEXT 69 WORDS

INF_1036.pdf (D164968063)

170 of 210 5/3/2023, 10:31 AM

102/301 SUBMITTED TEXT 60 WORDS

For situations 1 and 4, there is no choice in terms of

scheduling. Anew process (if one exists in the ready

queue) must be selected for execution. There is a choice,

however, for situations 2 and 3. When scheduling takes

place only under circumstances 1 and 4, we say that the

scheduling scheme is nonpreemptive or cooperative;

otherwise, it is

96% MATCHING TEXT 60 WORDS

COOS.docx (D142533740)

103/301 SUBMITTED TEXT 40 WORDS

non-preemptive scheduling, once the CPU has been

allocated to a process, the process keeps the CPU until it

releases the CPU either by terminating or by switching to

the waiting state. •

100% MATCHING TEXT 40 WORDS

INF_1036.pdf (D164968063)

104/301 SUBMITTED TEXT 105 WORDS

CPU utilization can range from 0 to 100 percent. In a real

system, it should range from 40 percent (for a lightly

loaded system) to 90 percent (for a heavily used system).

2. Throughput. If the CPU is busy executing processes,

then work is being done. One measure of work is the

number of processes that are completed per time unit,

called throughput. For long processes, this rate may be

one process per hour; for short transactions, it may be 10

processes per second. 3. Turnaround time. The

92% MATCHING TEXT 105 WORDS

COOS.docx (D142533740)

105/301 SUBMITTED TEXT 39 WORDS

time. 4. Waiting time. The CPU scheduling algorithm does

not affect the amount of time during which a process

executes or does I/O; it affects only the amount of time

34% MATCHING TEXT 39 WORDS

INF_1036.pdf (D164968063)

171 of 210 5/3/2023, 10:31 AM

106/301 SUBMITTED TEXT 70 WORDS

waiting in the ready queue. 5. Response time. In an

interactive system, turnaround time may not be the best

criterion. Often, a process can produce some output

fairly early and can continue computing new results while

previous results are being output to the user. Thus,

another measure is the time from the submission of a

request until the first response is produced.

100% MATCHING TEXT 70 WORDS

COOS.docx (D142533740)

107/301 SUBMITTED TEXT 70 WORDS

waiting in the ready queue. 5. Response time. In an

interactive system, turnaround time may not be the best

criterion. Often, a process can produce some output

fairly early and can continue computing new results while

previous results are being output to the user. Thus,

another measure is the time from the submission of a

request until the first response is produced.

100% MATCHING TEXT 70 WORDS

COOS.docx (D142535190)

108/301 SUBMITTED TEXT 19 WORDS

FIFO queue. When a process enters the ready queue, its

PCB is linked onto the tail of the queue.

81% MATCHING TEXT 19 WORDS

OS_SLM_Revised.pdf (D155071872)

109/301 SUBMITTED TEXT 15 WORDS

process enters the ready queue, its PCB is linked onto the

tail of the queue.

80% MATCHING TEXT 15 WORDS

INF_1036.pdf (D164968063)

110/301 SUBMITTED TEXT 18 WORDS

Waiting time for P2 = 0ms Waiting time for P3 = 3ms

Waiting time for P1 = 6

78% MATCHING TEXT 18 WORDS

OS_SLM_Revised.pdf (D155071872)

172 of 210 5/3/2023, 10:31 AM

111/301 SUBMITTED TEXT 23 WORDS

same, FCFS scheduling is used. As an example of SJF

scheduling, consider the following set of processes, with

the length of the CPU burst

89% MATCHING TEXT 23 WORDS

COOS.docx (D142533740)

112/301 SUBMITTED TEXT 26 WORDS

gives the minimum average waiting time for a given set of

processes. • Moving a short process before

100% MATCHING TEXT 26 WORDS

Operating System.pdf (D30089487)

113/301 SUBMITTED TEXT 77 WORDS

long one decreases the waiting time of the short process

more than it increases the waiting time of the long

process. • Consequently, the average waiting time

decreases. The real difficulty with the SJF algorithm is

knowing the length of the next CPU request. For long-

term (job) scheduling in a batch system, we can use as

the length the process time limit that a user specifies

when he submits the job.

97% MATCHING TEXT 77 WORDS

Operating System.pdf (D30089487)

114/301 SUBMITTED TEXT 104 WORDS

Preemptive SJF Process Arrival Time Burst Time P1 0.0 7

P2 2.0 4 P3 4.0 1

100% MATCHING TEXT 104 WORDS

Preemptive SJF. (3) Process Arrival Time Burst Time P P P

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

115/301 SUBMITTED TEXT 36 WORDS

We may not know the length of the next CPU burst, but

we may be able to predict its value. We expect that the

next CPU burst will be similar in length to the previous

ones.

100% MATCHING TEXT 36 WORDS

Operating System.pdf (D30089487)

173 of 210 5/3/2023, 10:31 AM

116/301 SUBMITTED TEXT 39 WORDS

time for P1 = 0ms Waiting time for P2 = (8 – 2)= 6ms

Waiting time for P3 = (7 - 4)= 3ms Waiting time for P4 =

(12 - 5)= 7ms

76% MATCHING TEXT 39 WORDS

OS_SLM_Revised.pdf (D155071872)

117/301 SUBMITTED TEXT 130 WORDS

P1 0.0 7 P2 2.0 4 P3 4.0 1 P4 5.0 4 Table 6.4 Waiting time

for P1 = (11 – 2)= 9ms Waiting time for P2 = (5 - 4)=

6ms Waiting time for P3 = 0ms Waiting time for P4 = (7 -

5)= 2ms Average waiting time

53% MATCHING TEXT 130 WORDS

OS_SLM_Revised.pdf (D155071872)

118/301 SUBMITTED TEXT 10 WORDS

preemptive SJF which is also known as Shortest-

Remaining-Time-First (SRTF),

87% MATCHING TEXT 10 WORDS

OS_SLM_Revised.pdf (D155071872)

119/301 SUBMITTED TEXT 42 WORDS

next process in the ready queue. • Otherwise, if the CPU

burst of the currently running process is longer than 1

time quantum,

85% MATCHING TEXT 42 WORDS

Operating System.pdf (D30089487)

120/301 SUBMITTED TEXT 57 WORDS

the timer will go off and will cause an interrupt to the OS.

o A context switch will be executed, and the process will

be put at the tail of the ready queue. The CPU scheduler

will then select the next process in the ready queue.

93% MATCHING TEXT 57 WORDS

COOS.docx (D142533740)

174 of 210 5/3/2023, 10:31 AM

121/301 SUBMITTED TEXT 35 WORDS

The average waiting time under the RR policy is often

long. Consider the following set of processes that arrive

at time 0, with the length of the CPU burst given in

milliseconds: (a time

95% MATCHING TEXT 35 WORDS

COOS.docx (D142533740)

122/301 SUBMITTED TEXT 25 WORDS

Which of the schedules in part (a) results in the minimal

average waiting time (over all processes) 3.

100% MATCHING TEXT 25 WORDS

Which of the schedules in part a results in the minimal

average waiting time (over all processes)?

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

123/301 SUBMITTED TEXT 34 WORDS

the performance of RR scheduling. Switching from one

process to another requires a certain amount of time for

doing the administration’ saving and loading registers and

memory maps, updating various tables and lists,

86% MATCHING TEXT 34 WORDS

Operating System.pdf (D30089487)

124/301 SUBMITTED TEXT 31 WORDS

A solution to the critical section problem must satisfy the

following three conditions: 1. Mutual Exclusion - Only

one process at a time

73% MATCHING TEXT 31 WORDS

COOS.docx (D142533740)

125/301 SUBMITTED TEXT 31 WORDS

A solution to the critical section problem must satisfy the

following three conditions: 1. Mutual Exclusion - Only

one process at a time

73% MATCHING TEXT 31 WORDS

COOS.docx (D142535190)

175 of 210 5/3/2023, 10:31 AM

126/301 SUBMITTED TEXT 43 WORDS

can be executing in their critical section. 2. Progress – If

no process is currently executing in their critical section,

and one or more processes want to execute their critical

section, then only the processes

40% MATCHING TEXT 43 WORDS

can be executing in their critical Progress - If no process

is executing in its critical section and there exist some

that wish to enter their critical section, then the selection

the processes

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

127/301 SUBMITTED TEXT 19 WORDS

their critical sections after a process requests entry into

their critical section and before that request is granted. (

58% MATCHING TEXT 19 WORDS

their critical sections after a process has made a request

to enter its critical section and before that request is

granted.

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

128/301 SUBMITTED TEXT 47 WORDS

solution to the critical section problem must satisfy the

following three conditions: 1. Mutual Exclusion - Only

one process at a time can be executing in their critical

section. 2. Progress –

100% MATCHING TEXT 47 WORDS

OS_SLM_Revised.pdf (D155071872)

129/301 SUBMITTED TEXT 17 WORDS

The Critical-section problem could be solved simply in a

uniprocessor environment if we could disallow interrupts

79% MATCHING TEXT 17 WORDS

COOS.docx (D142533740)

130/301 SUBMITTED TEXT 51 WORDS

being modified. In this manner, we could be sure that the

current sequence of instructions would be allowed to

execute in order without preemption. No other

instructions would be run, so no unexpected

modifications could be made to the shared variable.

Unfortunately, this solution is not feasible in a

multiprocessor environment.

96% MATCHING TEXT 51 WORDS

COOS.docx (D142533740)

176 of 210 5/3/2023, 10:31 AM

131/301 SUBMITTED TEXT 51 WORDS

being modified. In this manner, we could be sure that the

current sequence of instructions would be allowed to

execute in order without preemption. No other

instructions would be run, so no unexpected

modifications could be made to the shared variable.

Unfortunately, this solution is not feasible in a

multiprocessor environment.

96% MATCHING TEXT 51 WORDS

COOS.docx (D142535190)

132/301 SUBMITTED TEXT 10 WORDS

The structure of process Pi, is shown in Figure. The

100% MATCHING TEXT 10 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

133/301 SUBMITTED TEXT 10 WORDS

The structure of process Pi, is shown in Figure. The

100% MATCHING TEXT 10 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245827)

134/301 SUBMITTED TEXT 11 WORDS

There are 2 types of semaphores: Binary semaphores

Counting semaphores Binary semaphores

90% MATCHING TEXT 11 WORDS

INF_1036.pdf (D164968063)

135/301 SUBMITTED TEXT 18 WORDS

once a semaphore operation has stared, no other

process can access the semaphore until operation has

completed.

88% MATCHING TEXT 18 WORDS

INF_1036.pdf (D164968063)

177 of 210 5/3/2023, 10:31 AM

136/301 SUBMITTED TEXT 22 WORDS

ensure that when one process is executing in its critical

section, no other process is allowed to execute in its

critical section.

100% MATCHING TEXT 22 WORDS

ensure that when one process is executing in its critical

section, no other process is allowed to execute in its

critical section.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

137/301 SUBMITTED TEXT 12 WORDS

to make sure that the producer and consumer do not

access

100% MATCHING TEXT 12 WORDS

INF_1036.pdf (D164968063)

138/301 SUBMITTED TEXT 62 WORDS

types. Unit 8: Deadlocks 8.1 Objective After studying this

unit you will be able to understand about

66% MATCHING TEXT 62 WORDS

INF_1036.pdf (D164968063)

139/301 SUBMITTED TEXT 14 WORDS

conditions for deadlocks like mutual exclusion, hold and

wait, no-preemption and circular wait.

75% MATCHING TEXT 14 WORDS

InstructorsSolutions_ExcerciseQuestions.pdf (D147754554)

140/301 SUBMITTED TEXT 51 WORDS

This situation may be like, two people who are drawing

diagrams, with only one pencil and one ruler between

them. If one person takes the pencil and the other takes

the ruler, a deadlock occurs when the person with the

pencil needs the ruler and the person with the ruler

56% MATCHING TEXT 51 WORDS

Operating System.pdf (D30089487)

178 of 210 5/3/2023, 10:31 AM

141/301 SUBMITTED TEXT 41 WORDS

one process at a time 2. Hold and Wait: Processes already

holding resources may request new resources held by

other processes 3. No Preemption: No resource can be

42% MATCHING TEXT 41 WORDS

one process at a time can use a Hold and wait: a process

holding at least one resource is waiting to acquire

additional resources held by other processes. 3. No

preemption: a resource can be

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

142/301 SUBMITTED TEXT 41 WORDS

one process at a time 2. Hold and Wait: Processes already

holding resources may request new resources held by

other processes 3. No Preemption: No resource can be

42% MATCHING TEXT 41 WORDS

one process at a time can use a Hold and wait: a process

holding at least one resource is waiting to acquire

additional resources held by other processes. 3. No

preemption: a resource can be

https://docplayer.net/201234710-Department-of-computer-science-and-engineering-cs8493-operating-s ...

143/301 SUBMITTED TEXT 41 WORDS

There are four necessary conditions for a deadlock to

occur 1. Mutual Exclusion: A resource that cannot be

used by more than one process at a time 2.

75% MATCHING TEXT 41 WORDS

Operating System.pdf (D30089487)

144/301 SUBMITTED TEXT 23 WORDS

Two or more processes form a circular chain where each

process waits for a resource that the next process in the

chain

93% MATCHING TEXT 23 WORDS

Operating System.pdf (D30089487)

145/301 SUBMITTED TEXT 18 WORDS

impose a total ordering of all resources types, and to

require that each process requests resources in

82% MATCHING TEXT 18 WORDS

impose a total ordering of all types, and require that each

process requests resources in

https://all-operatingsystems.blogspot.com/2009/

179 of 210 5/3/2023, 10:31 AM

146/301 SUBMITTED TEXT 11 WORDS

With this rule, the resource allocation graph can never

have

100% MATCHING TEXT 11 WORDS

INF_1036.pdf (D164968063)

147/301 SUBMITTED TEXT 44 WORDS

processes can request resources whenever they want to,

but all requests must be made in numerical order. A

process may request first printer and then a tape drive

(order: 2, 4), but it may not request first a plotter and then

a printer (

95% MATCHING TEXT 44 WORDS

INF_1036.pdf (D164968063)

148/301 SUBMITTED TEXT 49 WORDS

This approach to the deadlock problem anticipates

deadlock before it actually occurs. This approach

employs an algorithm to access the possibility that

deadlock could occur and acting accordingly. This

method differs from deadlock prevention, which

guarantees that deadlock cannot occur by denying one

of the necessary conditions of deadlock.

96% MATCHING TEXT 49 WORDS

Operating System.pdf (D30089487)

149/301 SUBMITTED TEXT 33 WORDS

process needs to complete. o How many processes will

need to be terminated? 8.7.2

76% MATCHING TEXT 33 WORDS

process need to complete. 2. How many processes will

need to be terminated 3.

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

150/301 SUBMITTED TEXT 12 WORDS

held by other waiting processes. This situation is called a

deadlock.

100% MATCHING TEXT 12 WORDS

held by other waiting processes. This situation is called a

deadlock. 36.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

180 of 210 5/3/2023, 10:31 AM

151/301 SUBMITTED TEXT 12 WORDS

held by other waiting processes. This situation is called a

deadlock.

100% MATCHING TEXT 12 WORDS

held by other waiting processes. This situation is called a

deadlock. 36.

https://docplayer.net/201234710-Department-of-computer-science-and-engineering-cs8493-operating-s ...

152/301 SUBMITTED TEXT 16 WORDS

User programs typically refer to memory addresses with

symbolic names such as “i”, “count”, and “

100% MATCHING TEXT 16 WORDS

User programs typically refer to memory addresses with

symbolic names such as "i", "count", and "

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

153/301 SUBMITTED TEXT 29 WORDS

Temperature”. These symbolic names must be mapped or

bound to physical memory addresses, which typically

occurs in several stages: •

100% MATCHING TEXT 29 WORDS

Temperature". These symbolic names must be mapped or

bound to physical memory addresses, which typically

occurs in several stages:

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

154/301 SUBMITTED TEXT 20 WORDS

granting it leads to a safe state. If it does, the request is

granted, otherwise, it postponed until later.

97% MATCHING TEXT 20 WORDS

INF_1036.pdf (D164968063)

155/301 SUBMITTED TEXT 12 WORDS

Compile Time - If it is known at compile time where

100% MATCHING TEXT 12 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

156/301 SUBMITTED TEXT 12 WORDS

Compile Time - If it is known at compile time where

100% MATCHING TEXT 12 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245827)

181 of 210 5/3/2023, 10:31 AM

157/301 SUBMITTED TEXT 33 WORDS

The address generated by the CPU is a logical address,

whereas the address actually seen by the memory

hardware is a physical address. •

47% MATCHING TEXT 33 WORDS

INF_1036.pdf (D164968063)

158/301 SUBMITTED TEXT 94 WORDS

Address Space • The address generated by the CPU is a

logical address, whereas the address actually seen by the

memory hardware is a physical address. • Addresses

bound at compile time or load time have identical logical

and physical addresses. • Addresses created at execution

time, have different logical and physical addresses.

94% MATCHING TEXT 94 WORDS

Operating System.pdf (D30089487)

159/301 SUBMITTED TEXT 11 WORDS

the logical address is also known as a virtual address,

100% MATCHING TEXT 11 WORDS

OS_SLM_Revised.pdf (D155071872)

160/301 SUBMITTED TEXT 70 WORDS

The set of all logical addresses used by a program

composes the logical address space, and the set of all

corresponding physical addresses composes the physical

address space. • The run time mapping of logical to

physical addresses is handled by the memory-

management unit, MMU.

100% MATCHING TEXT 70 WORDS

Operating System.pdf (D30089487)

161/301 SUBMITTED TEXT 40 WORDS

whose value is added to every memory request at the

hardware level. Figure 3: Dynamic relocation using a

relocation register

81% MATCHING TEXT 40 WORDS

Operating System.pdf (D30089487)

182 of 210 5/3/2023, 10:31 AM

162/301 SUBMITTED TEXT 15 WORDS

fully included in executable modules, wasting both disk

space and main memory usage, because

85% MATCHING TEXT 15 WORDS

OS_SLM_Revised.pdf (D155071872)

163/301 SUBMITTED TEXT 46 WORDS

the first time a program calls a DLL routine, the stub will

recognize the fact and will replace itself with the actual

routine from the DLLlibrary. Further calls to the same

routine will access the routine directly and not incur the

overhead of the stub access.

73% MATCHING TEXT 46 WORDS

Operating System.pdf (D30089487)

164/301 SUBMITTED TEXT 44 WORDS

Contiguous Memory Allocation One approach to

memory management is to load each process into a

contiguous space. The operating system is allocated

space first, usually at either low or high memory

locations, and then the remaining available memory is

allocated to processes as needed. (

100% MATCHING TEXT 44 WORDS

CONTIGUOUS MEMORY ALLOCATION One approach to

memory management is to load each process into a

contiguous space. The operating system is allocated

space first, usually at either low or high memory

locations, and then the remaining available memory is

allocated to processes as needed. 3.1

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

165/301 SUBMITTED TEXT 60 WORDS

protection against user programs accessing areas that

they should not, allows programs to be relocated to

different memory starting addresses as needed, and

allows the memory space devoted to the OS to grow or

shrink dynamically as needs change.

100% MATCHING TEXT 60 WORDS

Protection against user programs accessing areas that

they should not, allows programs to be relocated to

different memory starting addresses as needed, and

allows the memory space devoted to the OS to grow or

shrink dynamically as needs change. 3.2

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

166/301 SUBMITTED TEXT 13 WORDS

Figure 4: swapping of two processes using a disk as a

backing store

95% MATCHING TEXT 13 WORDS

COOS.docx (D142533740)

183 of 210 5/3/2023, 10:31 AM

167/301 SUBMITTED TEXT 23 WORDS

Figure 5: Hardware Support for Relocation and Limit

Registers Memory Allocation • One method of

88% MATCHING TEXT 23 WORDS

COOS.docx (D142533740)

168/301 SUBMITTED TEXT 23 WORDS

Figure 5: Hardware Support for Relocation and Limit

Registers Memory Allocation • One method of

88% MATCHING TEXT 23 WORDS

COOS.docx (D142535190)

169/301 SUBMITTED TEXT 98 WORDS

Memory Allocation • One method of allocating

contiguous memory is to divide all available memory into

equal sized partitions, and to assign each process to their

own partition. This restricts both the number of

simultaneous processes and the maximum size of each

process and is no longer used. • An alternate approach is

to keep a list of unused (free) memory blocks (holes), and

to find a hole of a suitable size whenever a process needs

to be loaded into memory.

98% MATCHING TEXT 98 WORDS

OS_Notes_Full.pdf (D108987417)

170/301 SUBMITTED TEXT 73 WORDS

First fit - Search the list of holes until one is found that is

big enough to satisfy the request, and assign a portion of

that hole to that process. Whatever fraction of the hole

not needed by the request is left on the free list as a

smaller hole. Subsequent requests may start looking

either from the beginning of the list or from the point at

which this search ended. 2.

97% MATCHING TEXT 73 WORDS

OS_Notes_Full.pdf (D108987417)

184 of 210 5/3/2023, 10:31 AM

171/301 SUBMITTED TEXT 66 WORDS

Best fit - Allocate the smallest hole that is big enough to

satisfy the request. This saves large holes for other

process requests that may need them later, but the

resulting unused portions of holes may be too small to be

of any use, and will therefore be wasted. Keeping the free

list sorted can speed up the process of finding the right

hole. 3.

100% MATCHING TEXT 66 WORDS

OS_Notes_Full.pdf (D108987417)

172/301 SUBMITTED TEXT 33 WORDS

Worst fit - Allocate the largest hole available, thereby

increasing the likelihood that the remaining portion will

be usable for satisfying future requests. •

100% MATCHING TEXT 33 WORDS

OS_Notes_Full.pdf (D108987417)

173/301 SUBMITTED TEXT 21 WORDS

that either first or best fit are better than worst fit in terms

of both time and storage utilization. First

77% MATCHING TEXT 21 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

174/301 SUBMITTED TEXT 21 WORDS

that either first or best fit are better than worst fit in terms

of both time and storage utilization. First

77% MATCHING TEXT 21 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245827)

175/301 SUBMITTED TEXT 42 WORDS

first or best fit are better than worst fit in terms of both

time and storage utilization. First and best fits are about

equal in terms of storage utilization, but first fit is faster.

9.4

100% MATCHING TEXT 42 WORDS

OS_Notes_Full.pdf (D108987417)

185 of 210 5/3/2023, 10:31 AM

176/301 SUBMITTED TEXT 37 WORDS

in terms of storage utilization, but first fit is faster. 9.4

Fragmentation • All the memory allocation strategies

suffer from external fragmentation.

60% MATCHING TEXT 37 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

177/301 SUBMITTED TEXT 56 WORDS

Paging • Paging is a memory management scheme that

allows processes physical memory to be discontinuous,

and which eliminates problems with fragmentation by

allocating memory in equal sized blocks known as pages.

• Paging eliminates most of the problems

91% MATCHING TEXT 56 WORDS

OS_Notes_Full.pdf (D108987417)

178/301 SUBMITTED TEXT 41 WORDS

physical memory: Figure 6: Paging model of logical and

physical memory • A

95% MATCHING TEXT 41 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

179/301 SUBMITTED TEXT 41 WORDS

physical memory: Figure 6: Paging model of logical and

physical memory • A

95% MATCHING TEXT 41 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245827)

180/301 SUBMITTED TEXT 25 WORDS

page size is 2^n, then the high-order m-n bits of a logical

address designate the page number and the remaining n

bits represent the offset.

70% MATCHING TEXT 25 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

186 of 210 5/3/2023, 10:31 AM

181/301 SUBMITTED TEXT 21 WORDS

Figure 8: Paging example for a 32-byte memory with

4-byte pages •

100% MATCHING TEXT 21 WORDS

OS_SLM_Revised.pdf (D155071872)

182/301 SUBMITTED TEXT 31 WORDS

The percentage of time that the desired information is

found in the TLB is termed the hit ratio. • For example,

suppose that

52% MATCHING TEXT 31 WORDS

The percentage of times that the page number of is

found in the TLB is called the hit ratio. ➢ An 80-percent

hit ratio, for example, means that

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

183/301 SUBMITTED TEXT 41 WORDS

the page table. Figure 11: Valid(v) or invalid(i) bit in a page

table 9.6

88% MATCHING TEXT 41 WORDS

the Page table into 73 Valid (v) or Invalid (i) Bit In A Page

Table

https://docplayer.net/201234710-Department-of-computer-science-and-engineering-cs8493-operating-s ...

184/301 SUBMITTED TEXT 27 WORDS

Virtual Memory is the separation of user logical memory

from physical memory. This separation allows an

extremely large virtual memory for programmers when

physical memory is

88% MATCHING TEXT 27 WORDS

Virtual memory is the separation of user logical memory

from physical memory. This separation allows an

extremely large virtual memory to be for programmers

when only a smaller physical memory is

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

185/301 SUBMITTED TEXT 13 WORDS

that permits the logical address space of a process to be

noncontiguous.

87% MATCHING TEXT 13 WORDS

that permits the physical address space of a process to be

noncontiguous. •

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

186/301 SUBMITTED TEXT 13 WORDS

that permits the logical address space of a process to be

noncontiguous.

87% MATCHING TEXT 13 WORDS

that permits the physical address space of a process to be

noncontiguous. (

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

187 of 210 5/3/2023, 10:31 AM

187/301 SUBMITTED TEXT 13 WORDS

that permits the logical address space of a process to be

noncontiguous.

87% MATCHING TEXT 13 WORDS

that permits the physical address space of a process to be

noncontiguous. (

https://docplayer.net/201234710-Department-of-computer-science-and-engineering-cs8493-operating-s ...

188/301 SUBMITTED TEXT 33 WORDS

Page table is kept in main memory. • Page-table base

register (PTBR) points to the page table. •

100% MATCHING TEXT 33 WORDS

page table is kept in main memory. Page-table base

register (PTBR) points to the page table.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

189/301 SUBMITTED TEXT 68 WORDS

the page table. • In this scheme every data/instruction

access requires two memory accesses. One for the page

table and one for the data/instruction. • The two memory

access problem can be solved by the use of a special

fast-lookup hardware cache called associative memory •

100% MATCHING TEXT 68 WORDS

the page table. In this scheme every data/instruction

access requires two memory accesses. One for the page

table and one for the data / instruction The two memory

access problem can be solved by the use of a special

fast-lookup hardware cache called associative memory

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

190/301 SUBMITTED TEXT 29 WORDS

TLB is full, then replacement strategies range from least-

recently used, LRU to random. • Some TLBs allow some

entries to be

59% MATCHING TEXT 29 WORDS

Operating System.pdf (D30089487)

191/301 SUBMITTED TEXT 51 WORDS

Address generated by CPU is divided into: Page number

(p) - used as an index into a page table which contains

base address of each page in physical memory. Page

offset (d) - combined with base address to define the

physical memory address that is sent to the memory unit.

97% MATCHING TEXT 51 WORDS

Address generated by CPU is divided into: Page number

(p) used as an index into a page table which contains

base address of each page in physical memory Page

offset (d) combined with base address to define the

physical memory address that is sent to the memory unit

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

188 of 210 5/3/2023, 10:31 AM

192/301 SUBMITTED TEXT 51 WORDS

Address generated by CPU is divided into: Page number

(p) - used as an index into a page table which contains

base address of each page in physical memory. Page

offset (d) - combined with base address to define the

physical memory address that is sent to the memory unit.

97% MATCHING TEXT 51 WORDS

Address generated by CPU is divided into: Page number

(p) used as an index into a page table which contains

base address of each page in physical memory Page

offset (d) combined with base address to define the

physical memory address that is sent to the memory unit

https://docplayer.net/201234710-Department-of-computer-science-and-engineering-cs8493-operating-s ...

193/301 SUBMITTED TEXT 107 WORDS

Page table is kept in main memory. • Page-table base

register (PTBR) points to the page table. • Page-table

length register (PTLR) indicates size of the page table. • In

this scheme every data/instruction access requires two

memory accesses. One for the page table and one for the

data/instruction. • The two memory access problem can

be solved by the use of a special fast-lookup hardware

cache called associative memory •

95% MATCHING TEXT 107 WORDS

OS_Notes_Full.pdf (D108987417)

194/301 SUBMITTED TEXT 51 WORDS

Address generated by CPU is divided into: Page number

(p) - used as an index into a page table which contains

base address of each page in physical memory. Page

offset (d) - combined with base address to define the

physical memory address that is sent to the memory unit.

100% MATCHING TEXT 51 WORDS

OS_Notes_Full.pdf (D108987417)

195/301 SUBMITTED TEXT 50 WORDS

generated by CPU is divided into: Page number (p) - used

as an index into a page table which contains base address

of each page in physical memory. Page offset (d) -

combined with base address to define the physical

memory address that is sent to the memory unit.

95% MATCHING TEXT 50 WORDS

Operating System.pdf (D30089487)

189 of 210 5/3/2023, 10:31 AM

196/301 SUBMITTED TEXT 66 WORDS

If the size f the logical address space is 2m, and a page

size is 2n addressing units (bytes or words), then the high

order m-n bits of a logical address designate the page

number, and the n low order bits designate the page

offset.

93% MATCHING TEXT 66 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

197/301 SUBMITTED TEXT 15 WORDS

The segment number is used as an index into the

segment table. The offset

89% MATCHING TEXT 15 WORDS

The segment number is used as an index to the segment

table. The offset

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

198/301 SUBMITTED TEXT 15 WORDS

The segment number is used as an index into the

segment table. The offset

89% MATCHING TEXT 15 WORDS

The segment number is used as an index to the segment

table. The offset

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

199/301 SUBMITTED TEXT 12 WORDS

is further divided into a page number and a page offset.

90% MATCHING TEXT 12 WORDS

is further divided into a 10-bit page number and a 10-bit

page offset.

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

200/301 SUBMITTED TEXT 66 WORDS

If the size f the logical address space is 2m, and a page

size is 2n addressing units (bytes or words), then the high

order m-n bits of a logical address designate the page

number, and the n low order bits designate the page

offset.

93% MATCHING TEXT 66 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245827)

190 of 210 5/3/2023, 10:31 AM

201/301 SUBMITTED TEXT 20 WORDS

Page table is kept in main memory and a page table base

register (PTBR) points to the page table.

84% MATCHING TEXT 20 WORDS

page table is kept in main memory. Page-table base

register (PTBR) points to the page table.

https://docplayer.net/201234710-Department-of-computer-science-and-engineering-cs8493-operating-s ...

202/301 SUBMITTED TEXT 23 WORDS

The TLB is associative high-speed memory. Each entry in

the TLB consists of two parts a key and a value. If the

89% MATCHING TEXT 23 WORDS

The TLB is associative, high-speed memory. ➢ Each entry

in the TLB consists of two parts: ▪ a key (or and a value. ➢
When the

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

203/301 SUBMITTED TEXT 26 WORDS

If the page number is not in the TLB (TLB miss) a memory

reference to the page table is used to get the frame

number

70% MATCHING TEXT 26 WORDS

If the page number is not in the TLB (known as TLB miss),

a memory reference to the page table must be made.

When the frame number

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

204/301 SUBMITTED TEXT 26 WORDS

If the page number is not in the TLB (TLB miss) a memory

reference to the page table is used to get the frame

number

70% MATCHING TEXT 26 WORDS

If the page number is not in the TLB (known as TLB miss),

a memory reference to the page table must be made.

When the frame number

https://docplayer.net/201234710-Department-of-computer-science-and-engineering-cs8493-operating-s ...

205/301 SUBMITTED TEXT 12 WORDS

a page table base register (PTBR) points to the page table.

100% MATCHING TEXT 12 WORDS

Operating System.pdf (D30089487)

191 of 210 5/3/2023, 10:31 AM

206/301 SUBMITTED TEXT 70 WORDS

TLB contains only few of the page table entries. When a

logical address is generated by the CPU, its page number

is given to the TLB. If the page number is found its frame

number is immediately available and used to access

required memory. If the page number is not in the TLB

(TLB miss) a memory reference to the page table is used

to get the frame number

78% MATCHING TEXT 70 WORDS

Operating System.pdf (D30089487)

207/301 SUBMITTED TEXT 43 WORDS

the page table itself becomes excessively large. For

example, consider a system with a 32-bit logical address

space. If the page size in such system is 4 KB (212), then a

page table may consist of up to 1 million entries

(232/212).

81% MATCHING TEXT 43 WORDS

The page table itself becomes large for computers with

large logical address to 264). Example: r a system with a

32-bit logical address space. If the page size in such a

system is 4 KB(212), then a page table may consist of up

to 1 million entries (232/212).

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

208/301 SUBMITTED TEXT 21 WORDS

The percentage of time that a particular page number is

fond in the TLB is called the hit ratio. Let Hit Ratio=

77% MATCHING TEXT 21 WORDS

INF_1036.pdf (D164968063)

209/301 SUBMITTED TEXT 42 WORDS

a page size of 4 KB. A logical address is divided into a

page number consisting of 20 bits and a page offset

consisting of 12 bits. Because we page the page table, the

page number is further divided into a

100% MATCHING TEXT 42 WORDS

a page size of 4 KB. A logical address is divided into a

page number consisting of 20 bits and a page offset

consisting of 12 bits. Because we page the page table, the

page number is further divided into a 10-

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

210/301 SUBMITTED TEXT 35 WORDS

bit page number and a 10-bit page offset. Thus, a logical

address is as follows:

100% MATCHING TEXT 35 WORDS

bit page number and a 10-bit page offset. Thus, logical

address is as follows:

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

192 of 210 5/3/2023, 10:31 AM

211/301 SUBMITTED TEXT 15 WORDS

memory. One simple solution to this problem is to divide

the page table into

85% MATCHING TEXT 15 WORDS

OS_SLM_Revised.pdf (D155071872)

212/301 SUBMITTED TEXT 61 WORDS

the displacement within the page of the outer page table.

The address-translation method for this architecture is

shown in Figure 10.8 Because address translation works

from the outer page table inward, this scheme is also

known as a forward-mapped page table.

95% MATCHING TEXT 61 WORDS

the displacement within the page of the inner page table.

The address-translation method for this architecture is

shown in the Because address translation works from the

outer page table inward, this scheme is also known as a

forward-mapped page table. 2.

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

213/301 SUBMITTED TEXT 22 WORDS

spaces larger than 32 bits is to use a hashed page table,

with the hash value being the virtual page number.

100% MATCHING TEXT 22 WORDS

spaces larger than 32 bits is to use a hashed page table,

with the hash value being the virtual page number. (

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

214/301 SUBMITTED TEXT 34 WORDS

to handle collisions). Each element consists of three

fields: (1) the virtual page number, (2) the value of the

mapped page frame, and (3) a pointer to the next

element in the linked list.

80% MATCHING TEXT 34 WORDS

to handle collisions). 17 onsists three fields: The virtual

page number The value of the mapped page frame A

pointer to the next element in the linked list.

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

215/301 SUBMITTED TEXT 18 WORDS

value of the mapped page frame, and (3) a pointer to the

next element in the linked list.

73% MATCHING TEXT 18 WORDS

Value of mapped page frame. (f) Pointer to the next

element in the linked list.

https://docplayer.net/201234710-Department-of-computer-science-and-engineering-cs8493-operating-s ...

193 of 210 5/3/2023, 10:31 AM

216/301 SUBMITTED TEXT 69 WORDS

The virtual page number in the virtual address is hashed

into the hash table. The virtual page number is compared

with field 1 in the first element in the linked list. If there is

a match, the corresponding page frame (field 2) is used to

form the desired physical address. If there is no match,

subsequent entries in the linked list are searched for a

matching virtual page number.

90% MATCHING TEXT 69 WORDS

The virtual page number in the virtual address is hashed

into the hash table. o Virtual page number is compared to

field (a) in the 1st element in the linked list. If there is a

match, the corresponding page frame (field (b)) is used to

form the desired physical address. If there is no match,

subsequent entries in the linked list are searched for a

matching virtual page number. 78

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

217/301 SUBMITTED TEXT 69 WORDS

The virtual page number in the virtual address is hashed

into the hash table. The virtual page number is compared

with field 1 in the first element in the linked list. If there is

a match, the corresponding page frame (field 2) is used to

form the desired physical address. If there is no match,

subsequent entries in the linked list are searched for a

matching virtual page number.

90% MATCHING TEXT 69 WORDS

The virtual page number in the virtual address is hashed

into the hash table. o Virtual page number is compared to

field (a) in the 1st element in the linked list. If there is a

match, the corresponding page frame (field (b)) is used to

form the desired physical address. If there is no match,

subsequent entries in the linked list are searched for a

matching virtual page number.

https://docplayer.net/201234710-Department-of-computer-science-and-engineering-cs8493-operating-s ...

218/301 SUBMITTED TEXT 18 WORDS

similar to hashed page tables except that each entry in

the hash table refers to several pages (

91% MATCHING TEXT 18 WORDS

similar to hashed page table except that each entry in the

hash table refers to several pages

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

219/301 SUBMITTED TEXT 18 WORDS

similar to hashed page tables except that each entry in

the hash table refers to several pages (

91% MATCHING TEXT 18 WORDS

similar to hashed page table except that each entry in the

hash table refers to several pages

https://docplayer.net/201234710-Department-of-computer-science-and-engineering-cs8493-operating-s ...

220/301 SUBMITTED TEXT 11 WORDS

inverted page table has one entry for each real page (

100% MATCHING TEXT 11 WORDS

Inverted page table has one entry for each real page

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

194 of 210 5/3/2023, 10:31 AM

221/301 SUBMITTED TEXT 38 WORDS

frame) of memory. Each entry consists of the virtual

address of the page stored in that real memory location;

with information about the process that owns that page.

Thus, only one page table is in the system,

95% MATCHING TEXT 38 WORDS

frame) of memory & each entry consists of the virtual

address of the page stored in that real memory location,

with information about the process that owns that page.

So, only one page table is in the system.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

222/301 SUBMITTED TEXT 38 WORDS

frame) of memory. Each entry consists of the virtual

address of the page stored in that real memory location;

with information about the process that owns that page.

Thus, only one page table is in the system,

95% MATCHING TEXT 38 WORDS

frame) of memory & each entry consists of the virtual

address of the page stored in that real memory location,

with information about the process that owns that page.

So, only one page table is in the system. 75

https://docplayer.net/201234710-Department-of-computer-science-and-engineering-cs8493-operating-s ...

223/301 SUBMITTED TEXT 24 WORDS

where P1 is an index into the outer page table and P2 is

the displacement within the page of the outer page table.

100% MATCHING TEXT 24 WORDS

OS_Notes_Full.pdf (D108987417)

224/301 SUBMITTED TEXT 25 WORDS

Virtual memory also allows a process to be broken up

into pieces. These pieces need not be contiguously

located in main memory during execution,

60% MATCHING TEXT 25 WORDS

OS_Notes_Full.pdf (D108987417)

225/301 SUBMITTED TEXT 21 WORDS

a process to be broken up into pieces. These pieces need

not be contiguously located in main memory during

execution,

80% MATCHING TEXT 21 WORDS

Operating System.pdf (D30089487)

195 of 210 5/3/2023, 10:31 AM

226/301 SUBMITTED TEXT 27 WORDS

When we want to execute a process, we swap it into

memory. Rather than swapping the entire process into

memory, however, we use a lazy swapper.

100% MATCHING TEXT 27 WORDS

When we want to execute a process, we swap it into

memory. Rather than swapping the entire process into

memory, however, we use a lazy swapper

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

227/301 SUBMITTED TEXT 50 WORDS

be used before the process is swapped out again. Instead

of swapping in the whole process, the pager brings only

necessary pages into memory. Thus it avoids reading into

memory pages that will not be used any way, decreasing

the swap time and the amount of physical memory

needed.

71% MATCHING TEXT 50 WORDS

be used before the process is swapped out again. Instead

of swapping in a whole process, the pager brings only

those necessary pages into memory. Thus, it avoids

reading into memory pages that will not be used in

anyway, decreasing the swap time and the amount of

physical memory needed. 70

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

228/301 SUBMITTED TEXT 12 WORDS

When this bit is set to "valid", the associated page is

100% MATCHING TEXT 12 WORDS

When this bit is set to valid, the associated page is

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

229/301 SUBMITTED TEXT 22 WORDS

the concepts of demand paging, page-replacement

algorithms, and allocation of page frames •

100% MATCHING TEXT 22 WORDS

OS_SLM_Revised.pdf (D155071872)

230/301 SUBMITTED TEXT 33 WORDS

Figure 11.2: Page table when some pages are not in main

memory

100% MATCHING TEXT 33 WORDS

OS_SLM_Revised.pdf (D155071872)

231/301 SUBMITTED TEXT 33 WORDS

Figure 11.2: Page table when some pages are not in main

memory

100% MATCHING TEXT 33 WORDS

COOS.docx (D142533740)

196 of 210 5/3/2023, 10:31 AM

232/301 SUBMITTED TEXT 26 WORDS

free a frame by writing its contents to swap space and

changing the page table to indicate that the page is no

longer in memory.

92% MATCHING TEXT 26 WORDS

free it. A frame can be freed by writing its contents to

swap space, and changing the page table to indicate that

the page is no longer in memory.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

233/301 SUBMITTED TEXT 127 WORDS

Find the location of the desired page on the disk. 2. Find a

free frame: a. If there is a free frame, use it. b. If there is

no free frame, use a page-replacement algorithm to

select a victim frame. c. Write the Victorian frame to the

disk; change the page and frame tables accordingly. 3.

Read the desired page into the newly freed frame;

change the page and frame tables. 4. Restart the user

process.

95% MATCHING TEXT 127 WORDS

Find the location of the desired page on the disk. 2. Find a

free frame: a. If there is a free frame, use it. b. If there is

no free frame, use a page-replacement algorithm to

select a victim frame. c. Write the victim frame to the disk;

change the page and frame tables accordingly. 3. Read

the desired page into the newly freed frame; change the

page and frame tables. 4. Continue the user process

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

234/301 SUBMITTED TEXT 18 WORDS

the next FIFO page. When a page gets a second chance

its referenced bit is cleared and

91% MATCHING TEXT 18 WORDS

the next FIFO page. □ When a page gets a second

chance, its reference bit is cleared and

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

235/301 SUBMITTED TEXT 14 WORDS

a second chance will not be replaced until all other pages

are replaced.

96% MATCHING TEXT 14 WORDS

a second chance page will not be replaced until all other

pages are replaced. 27 (

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

236/301 SUBMITTED TEXT 51 WORDS

it will quickly page-fault. At this point, it must replace

some page. However, since all its pages are in active use,

it must replace a page that will be needed again right

away. Consequently, it quickly faults again, and again, and

again, replacing pages that it must bring back in

immediately.

100% MATCHING TEXT 51 WORDS

it will quickly page-fault. At this point, it must replace

some page. However, since all its pages are in active use,

it must replace a page that will be needed again right

away. Consequently, it quickly faults again, and again, and

again, replacing pages that it must bring back in

immediately.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

197 of 210 5/3/2023, 10:31 AM

237/301 SUBMITTED TEXT 24 WORDS

Page replacement takes the following approach. If no

frame is free, we find one that is currently not being used

and free it.

84% MATCHING TEXT 24 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

238/301 SUBMITTED TEXT 33 WORDS

replacement algorithm). With local replacement, if one

process starts thrashing, it cannot steal frames from

another process and cause the latter to thrash as well.

However, the problem is not entirely solved.

84% MATCHING TEXT 33 WORDS

replacement algorithm. With Local replacement

algorithm, if the process starts thrashing, it cannot frames

from another process and cause the latter to thrash as

well. The problem is not entirely solved.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

239/301 SUBMITTED TEXT 33 WORDS

replacement algorithm). With local replacement, if one

process starts thrashing, it cannot steal frames from

another process and cause the latter to thrash as well.

However, the problem is not entirely solved.

84% MATCHING TEXT 33 WORDS

replacement algorithm. With Local replacement

algorithm, if the process starts thrashing, it cannot frames

from another process and cause the latter to thrash as

well. The problem is not entirely solved.

https://docplayer.net/201234710-Department-of-computer-science-and-engineering-cs8493-operating-s ...

240/301 SUBMITTED TEXT 14 WORDS

slowly, until a maximum is reached. If the degree of

multiprogramming is increased

96% MATCHING TEXT 14 WORDS

OS_SLM_Revised.pdf (D155071872)

241/301 SUBMITTED TEXT 25 WORDS

describe the interfaces to file systems. • To discuss file-

system design tradeoffs, including access methods, file

sharing,

82% MATCHING TEXT 25 WORDS

COOS.docx (D142533740)

198 of 210 5/3/2023, 10:31 AM

242/301 SUBMITTED TEXT 25 WORDS

describe the interfaces to file systems. • To discuss file-

system design tradeoffs, including access methods, file

sharing,

82% MATCHING TEXT 25 WORDS

COOS.docx (D142535190)

243/301 SUBMITTED TEXT 12 WORDS

vary from one operating system to another but typically

consist of these:

100% MATCHING TEXT 12 WORDS

vary from one operating system to another, but typically

consist of these:

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

244/301 SUBMITTED TEXT 12 WORDS

vary from one operating system to another but typically

consist of these:

100% MATCHING TEXT 12 WORDS

vary from one operating system to another, but typically

consist of these:

https://docplayer.net/201234710-Department-of-computer-science-and-engineering-cs8493-operating-s ...

245/301 SUBMITTED TEXT 27 WORDS

attributes. • NAME: The symbolic file name is the only

information kept in human readable form. • Identifier:

This

100% MATCHING TEXT 27 WORDS

attributes. • Name: The symbolic file name is the only

information kept in human readable form. 8 • Identifier:

This

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

246/301 SUBMITTED TEXT 27 WORDS

attributes. • NAME: The symbolic file name is the only

information kept in human readable form. • Identifier:

This

100% MATCHING TEXT 27 WORDS

Attributes Name: The symbolic file name is the only

information kept in human readable form. Identifier: This

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

199 of 210 5/3/2023, 10:31 AM

247/301 SUBMITTED TEXT 69 WORDS

File system is the most visible aspect of an operating

system. It provides the mechanism for on-line storage of

and access to both data and programs of the operating

system and all users of the computer system. The file

system consists of two distinct parts: a collection of files,

each storing related data, and a directory structure, which

organizes and provides information about all the files in

the system.

99% MATCHING TEXT 69 WORDS

120E1250, 137E1250, 170E2340-Operating System.doc (D165245592)

248/301 SUBMITTED TEXT 34 WORDS

a file. Space in the file system must be found for the file.

An entry for the new file must be made in the directory. •

Writing a file.

96% MATCHING TEXT 34 WORDS

a file - space in the file system must be found for the file,

Second, an entry for the new file must be made in the

directory. Writing a file -

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

249/301 SUBMITTED TEXT 24 WORDS

must be found for the file. An entry for the new file must

be made in the directory. •

55% MATCHING TEXT 24 WORDS

OS_Notes_Full.pdf (D108987417)

250/301 SUBMITTED TEXT 54 WORDS

A file is an abstract data type defined and implemented by

the operating system. It is a sequence of logical records.

A logical record may be a byte, a line, or a more complex

data item. The operating system may specifically support

various record types or may leave that support to the

application program.

95% MATCHING TEXT 54 WORDS

COOS.docx (D142533740)

200 of 210 5/3/2023, 10:31 AM

251/301 SUBMITTED TEXT 68 WORDS

major task for the operating system is to map the logical

file concept onto physical storage devices such as

magnetic tape or disk. Since the physical record size of

the device may not be the same as the logical record size,

it may be necessary to order logical records into physical

records. Again, this task may be supported by the

operating system or left for the application program.

92% MATCHING TEXT 68 WORDS

COOS.docx (D142533740)

252/301 SUBMITTED TEXT 51 WORDS

A tree-structured directory allows a user to create

subdirectories to organize files. Acyclic-graph directory

structures enable users to share subdirectories and files

but complicate searching and deletion. A general graph

structure allows complete flexibility in the sharing of files

and directories but sometimes requires garbage

collection to recover unused disk space.

100% MATCHING TEXT 51 WORDS

COOS.docx (D142533740)

253/301 SUBMITTED TEXT 51 WORDS

A tree-structured directory allows a user to create

subdirectories to organize files. Acyclic-graph directory

structures enable users to share subdirectories and files

but complicate searching and deletion. A general graph

structure allows complete flexibility in the sharing of files

and directories but sometimes requires garbage

collection to recover unused disk space.

100% MATCHING TEXT 51 WORDS

COOS.docx (D142535190)

254/301 SUBMITTED TEXT 28 WORDS

The control of devices connected to the computer is a

major concern of operating-system designers. Because

input output devices vary so widely in their function and

speed (

62% MATCHING TEXT 28 WORDS

OS_Notes_Full.pdf (D108987417)

201 of 210 5/3/2023, 10:31 AM

255/301 SUBMITTED TEXT 24 WORDS

them. These methods form the I/O subsystem of the

kernel, which separates the rest of the kernel from the

complexities of managing I/O devices.

72% MATCHING TEXT 24 WORDS

OS_Notes_Full.pdf (D108987417)

256/301 SUBMITTED TEXT 45 WORDS

A device communicates with a computer system by

sending signals over a cable or even through the air. The

device communicates with the machine via a connection

point i.e. port. If devices use a common set of wires, the

connection is called a bus.

85% MATCHING TEXT 45 WORDS

A device communicates with a computer system by

sending signals over a cable or even through the air. Port:

The device communicates with the machine via a

connection point (or port), for example, a serial port. If

one or more devices use a common set of wires, the

connection is called a bus.

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

257/301 SUBMITTED TEXT 32 WORDS

a uniform device access interface to the I/O subsystem,

much as system calls provide a standard interface

between the application and the operating system. 13.3

100% MATCHING TEXT 32 WORDS

INF_1036.pdf (D164968063)

258/301 SUBMITTED TEXT 44 WORDS

bus) that connects the processor-memory subsystem to

the fast devices and an expansion bus that connects

relatively slow devices such as the keyboard and serial

and parallel ports. In the upper-right portion of the figure,

four disks are connected together on a SCSI (

100% MATCHING TEXT 44 WORDS

bus that connects the processor-memory subsystem to

the fast devices, and an expansion bus that connects

relatively slow devices such as the keyboard and serial

and parallel ports. In the upper- right portion of the

figure, four disks are connected together on a SCSI

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

259/301 SUBMITTED TEXT 36 WORDS

bus plugged into a SCSI controller. A controller is a

collection of electronics that can operate a port, a bus, or

a device. A serial-port controller is a simple device

controller. It is a single chip (

95% MATCHING TEXT 36 WORDS

bus plugged into a SCSI controller. A controller or host is

a collection of electronics that can operate a port, a bus,

or a device. A serial-port controller is a simple device

controller. It is a single chip

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

202 of 210 5/3/2023, 10:31 AM

260/301 SUBMITTED TEXT 16 WORDS

a chip) in the computer that controls the signals on the

wires of a serial port.

96% MATCHING TEXT 16 WORDS

a single chip in the computer that controls the signals on

the wires of a serial port.

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

261/301 SUBMITTED TEXT 13 WORDS

The SCSI bus controller is often implemented as a

separate circuit board

100% MATCHING TEXT 13 WORDS

the SCSI bus controller is often implemented as a

separate circuit board.

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

262/301 SUBMITTED TEXT 19 WORDS

The CPU executes I/O requests using the standard data-

transfer instructions to read and write the device- control

registers.

100% MATCHING TEXT 19 WORDS

The CPU executes I/O requests using the standard data-

transfer instructions to read and write the device- control

registers. 29

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

263/301 SUBMITTED TEXT 37 WORDS

device controller raises an interrupt by asserting a signal

on the interrupt request line, the CPU catches the

interrupt and dispatches it to the interrupt handler, and

the handler clears the interrupt by servicing the device.

95% MATCHING TEXT 37 WORDS

Device controller raises an interrupt by asserting a signal

on the interrupt request line. 2. The CPU catches the

interrupt and dispatches to the interrupt handler and 3.

The handler clears the interrupt by servicing the device. •

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

264/301 SUBMITTED TEXT 21 WORDS

can improve overall system performance, can share

device access fairly among processes, and can reduce

the average waiting time for

95% MATCHING TEXT 21 WORDS

can improve overall system performance, • It can share

device access fairly among processes, It can reduce the

average waiting time for 1/0

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

203 of 210 5/3/2023, 10:31 AM

265/301 SUBMITTED TEXT 49 WORDS

queue of requests for each device. When an application

issues a blocking I/O system call, the request is placed on

the queue for that device. The I/O scheduler rearranges

the order of the queue to improve the overall system

efficiency and the average response time experienced by

applications.

100% MATCHING TEXT 49 WORDS

queue of requests for each device. • When an application

issues a blocking I/O system call, • The request is placed

on the queue for that device. • The I/O scheduler

rearranges the order of the queue to improve the overall

system efficiency and the average response time

experienced by applications. 2.

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

266/301 SUBMITTED TEXT 49 WORDS

queue of requests for each device. When an application

issues a blocking I/O system call, the request is placed on

the queue for that device. The I/O scheduler rearranges

the order of the queue to improve the overall system

efficiency and the average response time experienced by

applications.

100% MATCHING TEXT 49 WORDS

queue of requests for each device. 1. When an application

issues a blocking I/O system call, 2. The request is placed

on the queue for that device. 3. The I/O scheduler

rearranges the order of the queue to improve the overall

system efficiency and the average response time

experienced by applications.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

267/301 SUBMITTED TEXT 49 WORDS

queue of requests for each device. When an application

issues a blocking I/O system call, the request is placed on

the queue for that device. The I/O scheduler rearranges

the order of the queue to improve the overall system

efficiency and the average response time experienced by

applications.

100% MATCHING TEXT 49 WORDS

queue of requests for each device. 1. When an application

issues a blocking I/O system call, 2. The request is placed

on the queue for that device. 3. The I/O scheduler

rearranges the order of the queue to improve the overall

system efficiency and the average response time

experienced by applications.

https://docplayer.net/201234710-Department-of-computer-science-and-engineering-cs8493-operating-s ...

268/301 SUBMITTED TEXT 42 WORDS

the I/O subsystem improves the efficiency of the

computer is by scheduling I/O operations. Another way is

by using storage space in main memory or on disk via

techniques called buffering, caching, and spooling. 13.5.2

100% MATCHING TEXT 42 WORDS

the I/O subsystem improves the efficiency of the

computer is by scheduling I/O operations. • Another way

is by using storage space in main memory or on disk, via

techniques called buffering, caching, and spooling. 1.

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

204 of 210 5/3/2023, 10:31 AM

269/301 SUBMITTED TEXT 42 WORDS

the I/O subsystem improves the efficiency of the

computer is by scheduling I/O operations. Another way is

by using storage space in main memory or on disk via

techniques called buffering, caching, and spooling. 13.5.2

100% MATCHING TEXT 42 WORDS

the I/O subsystem improves the efficiency of the

computer is by scheduling I/O operations. Another way is

by using storage space in main memory or on disk, via

techniques called buffering, caching, and spooling.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

270/301 SUBMITTED TEXT 42 WORDS

the I/O subsystem improves the efficiency of the

computer is by scheduling I/O operations. Another way is

by using storage space in main memory or on disk via

techniques called buffering, caching, and spooling. 13.5.2

100% MATCHING TEXT 42 WORDS

the I/O subsystem improves the efficiency of the

computer is by scheduling I/O operations. Another way is

by using storage space in main memory or on disk, via

techniques called buffering, caching, and spooling.

https://docplayer.net/201234710-Department-of-computer-science-and-engineering-cs8493-operating-s ...

271/301 SUBMITTED TEXT 30 WORDS

Buffering A buffer is a memory area that stores data while

they are transferred between two devices or between a

device and an application. Buffering is done for three

reasons.

100% MATCHING TEXT 30 WORDS

buffering. A buffer is a memory area that stores data while

they are transferred between two devices or between a

device and an application. Buffering is done for three

reasons,

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

272/301 SUBMITTED TEXT 46 WORDS

a set of wires and a rigidly defined protocol that specifies

a set of messages that can be sent on the wires.

100% MATCHING TEXT 46 WORDS

INF_1036.pdf (D164968063)

273/301 SUBMITTED TEXT 30 WORDS

Buffering A buffer is a memory area that stores data while

they are transferred between two devices or between a

device and an application. Buffering is done for three

reasons.

100% MATCHING TEXT 30 WORDS

buffering. A buffer is a memory area that stores data while

they are transferred between two devices or between a

device and an application. Buffering is done for three

reasons,

https://docplayer.net/201234710-Department-of-computer-science-and-engineering-cs8493-operating-s ...

205 of 210 5/3/2023, 10:31 AM

274/301 SUBMITTED TEXT 27 WORDS

Caching A cache is a region of fast memory that holds

copies of data. Access to the cached copy is more

efficient than access to the original.

100% MATCHING TEXT 27 WORDS

Caching A cache is a region of fast memory that holds

copies of data. Access to the cached copy is more

efficient than access to the original

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

275/301 SUBMITTED TEXT 27 WORDS

Caching A cache is a region of fast memory that holds

copies of data. Access to the cached copy is more

efficient than access to the original.

100% MATCHING TEXT 27 WORDS

caching. A cache is a region of fast memory that holds

copies of data. Access to the cached copy is more

efficient than access to the original.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

276/301 SUBMITTED TEXT 19 WORDS

Caching and buffering are distinct functions, but

sometimes a region of memory can be used for both

purposes.

100% MATCHING TEXT 19 WORDS

Caching and buffering are distinct functions, but

sometimes a region of memory can be used for both

purposes. 32.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

277/301 SUBMITTED TEXT 19 WORDS

Caching and buffering are distinct functions, but

sometimes a region of memory can be used for both

purposes.

100% MATCHING TEXT 19 WORDS

Caching and buffering are distinct functions, but

sometimes a region of memory can be used for both

purposes. 32.

https://docplayer.net/201234710-Department-of-computer-science-and-engineering-cs8493-operating-s ...

278/301 SUBMITTED TEXT 37 WORDS

When the kernel receives a file I/O request, the kernel first

accesses the buffer cache to see whether that region of

the file is already available in main memory. 13.5.4

100% MATCHING TEXT 37 WORDS

When the kernel receives a file I/O request, 1. The kernel

first accesses the buffer cache to see whether that region

of the file is already available in main memory. 34 2.

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

206 of 210 5/3/2023, 10:31 AM

279/301 SUBMITTED TEXT 37 WORDS

When the kernel receives a file I/O request, the kernel first

accesses the buffer cache to see whether that region of

the file is already available in main memory. 13.5.4

100% MATCHING TEXT 37 WORDS

When the kernel receives a file I/O request, 1. The kernel

first accesses the buffer cache to see whether that region

of the file is already available in main memory. 2.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

280/301 SUBMITTED TEXT 48 WORDS

spool is a buffer that holds output for a device, such as a

printer, that cannot accept interleaved data streams.

Although a printer can serve only one job at a time,

several applications may wish to print their output

concurrently, without having their output mixed together.

The

93% MATCHING TEXT 48 WORDS

Spool: A buffer that holds output for a device, such as a

printer, that cannot accept interleaved data streams. A

printer can serve only one job at a time, several

applications may wish to print their output concurrently,

without having their output mixed together The

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

281/301 SUBMITTED TEXT 41 WORDS

provides a control interface that enables users and

system administrators to display the queue, to remove

unwanted jobs before those jobs print, to suspend

printing while the printer is serviced, and so on. 13.5.5

100% MATCHING TEXT 41 WORDS

provides a control interface that enables users and

system administrators ; • To display the queue, • To

remove unwanted jobs before those jobs print, • To

suspend printing while the printer is serviced, and so on.

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

282/301 SUBMITTED TEXT 19 WORDS

Error handling An operating system that uses protected

memory can guard against many kinds of hardware and

application errors,

100% MATCHING TEXT 19 WORDS

Error Handling An operating system that uses protected

memory can guard against many kinds of hardware and

application errors.

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

283/301 SUBMITTED TEXT 20 WORDS

transient reasons! as when a network becomes

overloaded! or for "permanent" reasons! as when a disk

controller becomes defective.

89% MATCHING TEXT 20 WORDS

INF_1036.pdf (D164968063)

207 of 210 5/3/2023, 10:31 AM

284/301 SUBMITTED TEXT 16 WORDS

controlling the access of programs, processes or users to

the resources of a computer system.

86% MATCHING TEXT 16 WORDS

controlling the access of programs, processes, or users to

the resources by a computer system.

https://www.prathyusha.edu.in/cse/notes/CS8493-OS.pdf

285/301 SUBMITTED TEXT 17 WORDS

Device drivers are modules that can be plugged into an

OS to handle a particular device

96% MATCHING TEXT 17 WORDS

OS_Notes_Full.pdf (D108987417)

286/301 SUBMITTED TEXT 14 WORDS

programs, users and even systems be given just enough

privileges to perform their tasks.

78% MATCHING TEXT 14 WORDS

OS_Notes_Full.pdf (D108987417)

287/301 SUBMITTED TEXT 15 WORDS

can be accessed only through well-defined and

meaningful operations. Objects are essentially abstract

data types.

65% MATCHING TEXT 15 WORDS

Operating System.pdf (D30089487)

288/301 SUBMITTED TEXT 18 WORDS

a process should be able to access only those resources

that it currently requires to complete its

58% MATCHING TEXT 18 WORDS

Operating System.pdf (D30089487)

289/301 SUBMITTED TEXT 21 WORDS

as the need-to-know principle, is useful in limiting the

amount of damage a faulty process can cause in the

system.

50% MATCHING TEXT 21 WORDS

Operating System.pdf (D30089487)

208 of 210 5/3/2023, 10:31 AM

290/301 SUBMITTED TEXT 24 WORDS

similar to the principle of least privilege, in that the goals

of protection are to minimize the risks of possible security

violations. 14.4.1 Domain Structure

85% MATCHING TEXT 24 WORDS

Operating System.pdf (D30089487)

291/301 SUBMITTED TEXT 23 WORDS

process may access. Each domain defines a set of objects

and the types of operation that may be invoked on each

object.

84% MATCHING TEXT 23 WORDS

Operating System.pdf (D30089487)

292/301 SUBMITTED TEXT 15 WORDS

The association between a process and a domain may be

either static, if the

78% MATCHING TEXT 15 WORDS

Operating System.pdf (D30089487)

293/301 SUBMITTED TEXT 16 WORDS

set of objects and the types of operations that can be

invoked on each object.

90% MATCHING TEXT 16 WORDS

Operating System.pdf (D30089487)

294/301 SUBMITTED TEXT 25 WORDS

What is the “need-to-know” principle? Why is it important

for protection system to adhere to this principle? 5.

86% MATCHING TEXT 25 WORDS

InstructorsSolutions_ExcerciseQuestions.pdf (D147754554)

295/301 SUBMITTED TEXT 34 WORDS

Security Violation (or misuse) of the system can be

categorized as intentional or accidental. It is easier to

protect against accidental misuse than against malicious

misuse. 15.1.1

90% MATCHING TEXT 34 WORDS

OS_Notes_Full.pdf (D108987417)

209 of 210 5/3/2023, 10:31 AM

296/301 SUBMITTED TEXT 15 WORDS

The U.S. Department of Defense Trusted Computer

System Evaluation Criteria specify four security

classifications

83% MATCHING TEXT 15 WORDS

INF_1036.pdf (D164968063)

297/301 SUBMITTED TEXT 28 WORDS

is used for systems that have failed to meet the

requirements of any of the other security classes For

instance, MS-DOS and Windows 3.1 are in division D.

94% MATCHING TEXT 28 WORDS

INF_1036.pdf (D164968063)

298/301 SUBMITTED TEXT 14 WORDS

CPU utilization by organizing jobs so that the CPU always

had something to execute.

78% MATCHING TEXT 14 WORDS

CPU Utilization by organizing jobs so that the CPU always

has one to execute.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

299/301 SUBMITTED TEXT 14 WORDS

CPU utilization by organizing jobs so that the CPU always

had something to execute.

78% MATCHING TEXT 14 WORDS

CPU Utilization by organizing jobs so that the CPU always

has one to execute.

https://docplayer.net/201234710-Department-of-computer-science-and-engineering-cs8493-operating-s ...

300/301 SUBMITTED TEXT 53 WORDS

What are two advantages of encrypting data stored in the

computer system?

100% MATCHING TEXT 53 WORDS

InstructorsSolutions_ExcerciseQuestions.pdf (D147754554)

301/301 SUBMITTED TEXT 16 WORDS

multiprogramming improved CPU utilization by

organizing jobs so that the CPU always had something to

execute.

71% MATCHING TEXT 16 WORDS

OS_Notes_Full.pdf (D108987417)

210 of 210 5/3/2023, 10:31 AM

